You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

pypesto

Package Overview
Dependencies
Maintainers
3
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pypesto

python-based Parameter EStimation TOolbox

0.5.6
pipPyPI
Maintainers
3

pyPESTO - Parameter EStimation TOolbox for python

pyPESTO logo

pyPESTO is a widely applicable and highly customizable toolbox for parameter estimation.

PyPI CI Coverage Documentation DOI

Feature overview

Feature overview of pyPESTO. Figure taken from the Bioinformatics publication.

pyPESTO features include:

  • Parameter estimation interfacing multiple optimization algorithms including multi-start local and global optimization. (example, overview of optimizers)
  • Interface to multiple simulators including
    • AMICI for efficient simulation and sensitivity analysis of ordinary differential equation (ODE) models. (example)
    • RoadRunner for simulation of SBML models. (example)
    • Jax and Julia for automatic differentiation.
  • Uncertainty quantification using various methods:
    • Profile likelihoods.
    • Sampling using Markov chain Monte Carlo (MCMC), parallel tempering, and interfacing other samplers including emcee, pymc and dynesty. (example)
    • Variational inference
  • Complete parameter estimation pipeline for systems biology problems specified in SBML and PEtab. (example)
  • Parameter estimation pipelines for different modes of data:
  • Model selection. (example)
  • Various visualization methods to analyze parameter estimation results.

Quick install

The simplest way to install pyPESTO is via pip:

pip3 install pypesto

More information is available here: https://pypesto.readthedocs.io/en/latest/install.html

Documentation

The documentation is hosted on readthedocs.io: https://pypesto.readthedocs.io

Examples

Multiple use cases are discussed in the documentation. In particular, there are jupyter notebooks in the doc/example directory.

Contributing

We are happy about any contributions. For more information on how to contribute to pyPESTO check out https://pypesto.readthedocs.io/en/latest/contribute.html

How to Cite

Citeable DOI for the latest pyPESTO release: DOI

When using pyPESTO in your project, please cite

  • Schälte, Y., Fröhlich, F., Jost, P. J., Vanhoefer, J., Pathirana, D., Stapor, P., Lakrisenko, P., Wang, D., Raimúndez, E., Merkt, S., Schmiester, L., Städter, P., Grein, S., Dudkin, E., Doresic, D., Weindl, D., & Hasenauer, J. (2023). pyPESTO: A modular and scalable tool for parameter estimation for dynamic models, Bioinformatics, 2023, btad711, doi:10.1093/bioinformatics/btad711

When presenting work that employs pyPESTO, feel free to use one of the icons in doc/logo/:

pyPESTO Logo

There is a list of publications using pyPESTO. If you used pyPESTO in your work, we are happy to include your project, please let us know via a GitHub issue.

References

pyPESTO supersedes PESTO a parameter estimation toolbox for MATLAB, whose development is discontinued.

Keywords

parameter inference

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts