Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
.. image:: https://img.shields.io/badge/license-MIT-blue.svg :target: https://opensource.org/licenses/MIT/ :alt: License .. image:: https://img.shields.io/github/release/barrust/pyprobables.svg :target: https://github.com/barrust/pyprobables/releases :alt: GitHub release .. image:: https://github.com/barrust/pyprobables/workflows/Python%20package/badge.svg :target: https://github.com/barrust/pyprobables/actions?query=workflow%3A%22Python+package%22 :alt: Build Status .. image:: https://codecov.io/gh/barrust/pyprobables/branch/master/graph/badge.svg?token=OdETiNgz9k :target: https://codecov.io/gh/barrust/pyprobables :alt: Test Coverage .. image:: https://readthedocs.org/projects/pyprobables/badge/?version=latest :target: http://pyprobables.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://badge.fury.io/py/pyprobables.svg :target: https://pypi.org/project/pyprobables/ :alt: Pypi Release .. image:: https://pepy.tech/badge/pyprobables :target: https://pepy.tech/project/pyprobables :alt: Downloads
pyprobables is a pure-python library for probabilistic data structures. The goal is to provide the developer with a pure-python implementation of common probabilistic data-structures to use in their work.
To achieve better raw performance, it is recommended supplying an alternative
hashing algorithm that has been compiled in C. This could include using the
md5 and sha512 algorithms provided or installing a third party package and
writing your own hashing strategy. Some options include the murmur hash
mmh3 <https://github.com/hajimes/mmh3>
__ or those from the
pyhash <https://github.com/flier/pyfasthash>
__ library. Each data object in
pyprobables makes it easy to pass in a custom hashing function.
Read more about how to use Supplying a pre-defined, alternative hashing strategies
_
or Defining hashing function using the provided decorators
_.
Pip Installation:
::
$ pip install pyprobables
To install from source:
To install pyprobables
, simply clone the repository on GitHub <https://github.com/barrust/pyprobables>
__, then run from the folder:
::
$ python setup.py install
pyprobables
supports python 3.6 - 3.11+
For python 2.7 support, install release 0.3.2 <https://github.com/barrust/pyprobables/releases/tag/v0.3.2>
__
::
$ pip install pyprobables==0.3.2
The documentation of is hosted on
readthedocs.io <http://pyprobables.readthedocs.io/en/latest/code.html#api>
__
You can build the documentation locally by running:
::
$ pip install sphinx
$ cd docs/
$ make html
To run automated tests, one must simply run the following command from the downloaded folder:
::
$ python setup.py test
Import pyprobables and setup a Bloom Filter ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
from probables import BloomFilter
blm = BloomFilter(est_elements=1000, false_positive_rate=0.05)
blm.add('google.com')
blm.check('facebook.com') # should return False
blm.check('google.com') # should return True
Import pyprobables and setup a Count-Min Sketch ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
from probables import CountMinSketch
cms = CountMinSketch(width=1000, depth=5)
cms.add('google.com') # should return 1
cms.add('facebook.com', 25) # insert 25 at once; should return 25
Import pyprobables and setup a Cuckoo Filter ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
from probables import CuckooFilter
cko = CuckooFilter(capacity=100, max_swaps=10)
cko.add('google.com')
cko.check('facebook.com') # should return False
cko.check('google.com') # should return True
Import pyprobables and setup a Quotient Filter ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
from probables import QuotientFilter
qf = QuotientFilter(quotient=24)
qf.add('google.com')
qf.check('facebook.com') # should return False
qf.check('google.com') # should return True
Supplying a pre-defined, alternative hashing strategies ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
from probables import BloomFilter
from probables.hashes import default_sha256
blm = BloomFilter(est_elements=1000, false_positive_rate=0.05,
hash_function=default_sha256)
blm.add('google.com')
blm.check('facebook.com') # should return False
blm.check('google.com') # should return True
.. _use-custom-hashing-strategies:
Defining hashing function using the provided decorators ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
import mmh3 # murmur hash 3 implementation (pip install mmh3)
from probables.hashes import hash_with_depth_bytes
from probables import BloomFilter
@hash_with_depth_bytes
def my_hash(key, depth):
return mmh3.hash_bytes(key, seed=depth)
blm = BloomFilter(est_elements=1000, false_positive_rate=0.05, hash_function=my_hash)
.. code:: python
import hashlib
from probables.hashes import hash_with_depth_int
from probables.constants import UINT64_T_MAX
from probables import BloomFilter
@hash_with_depth_int
def my_hash(key, seed=0, encoding="utf-8"):
max64mod = UINT64_T_MAX + 1
val = int(hashlib.sha512(key.encode(encoding)).hexdigest(), 16)
val += seed # not a good example, but uses the seed value
return val % max64mod
blm = BloomFilter(est_elements=1000, false_positive_rate=0.05, hash_function=my_hash)
See the API documentation <http://pyprobables.readthedocs.io/en/latest/code.html#api>
__
for other data structures available and the
quickstart page <http://pyprobables.readthedocs.io/en/latest/quickstart.html#quickstart>
__
for more examples!
Please see the changelog <https://github.com/barrust/pyprobables/blob/master/CHANGELOG.md>
__ for a list
of all changes.
If you are using previously exported probablistic data structures (v0.4.1 or below) and used the default hashing strategy, you will want to use the following code to mimic the original default hashing algorithm.
.. code:: python
from probables import BloomFilter
from probables.hashes import hash_with_depth_int
@hash_with_depth_int
def old_fnv1a(key, depth=1):
return tmp_fnv_1a(key)
def tmp_fnv_1a(key):
max64mod = UINT64_T_MAX + 1
hval = 14695981039346656073
fnv_64_prime = 1099511628211
tmp = map(ord, key)
for t_str in tmp:
hval ^= t_str
hval *= fnv_64_prime
hval %= max64mod
return hval
blm = BloomFilter(filpath="old-file-path.blm", hash_function=old_fnv1a)
FAQs
Probabilistic data structures in python
We found that pyprobables demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.