Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
A Python package for interacting with SRAdb and downloading datasets from SRA/ENA/GEO
https://saketkc.github.io/pysradb
pysradb
supports command line usage. See
CLI instructions or
quickstart
guide.
$ pysradb
usage: pysradb [-h] [--version] [--citation]
{metadata,download,search,gse-to-gsm,gse-to-srp,gsm-to-gse,gsm-to-srp,gsm-to-srr,gsm-to-srs,gsm-to-srx,srp-to-gse,srp-to-srr,srp-to-srs,srp-to-srx,srr-to-gsm,srr-to-srp,srr-to-srs,srr-to-srx,srs-to-gsm,srs-to-srx,srx-to-srp,srx-to-srr,srx-to-srs}
...
pysradb: Query NGS metadata and data from NCBI Sequence Read Archive.
version: 2.0.1
Citation: 10.12688/f1000research.18676.1
optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
--citation how to cite
subcommands:
{metadata,download,search,gse-to-gsm,gse-to-srp,gsm-to-gse,gsm-to-srp,gsm-to-srr,gsm-to-srs,gsm-to-srx,srp-to-gse,srp-to-srr,srp-to-srs,srp-to-srx,srr-to-gsm,srr-to-srp,srr-to-srs,srr-to-srx,srs-to-gsm,srs-to-srx,srx-to-srp,srx-to-srr,srx-to-srs}
metadata Fetch metadata for SRA project (SRPnnnn)
download Download SRA project (SRPnnnn)
search Search SRA for matching text
gse-to-gsm Get GSM for a GSE
gse-to-srp Get SRP for a GSE
gsm-to-gse Get GSE for a GSM
gsm-to-srp Get SRP for a GSM
gsm-to-srr Get SRR for a GSM
gsm-to-srs Get SRS for a GSM
gsm-to-srx Get SRX for a GSM
srp-to-gse Get GSE for a SRP
srp-to-srr Get SRR for a SRP
srp-to-srs Get SRS for a SRP
srp-to-srx Get SRX for a SRP
srr-to-gsm Get GSM for a SRR
srr-to-srp Get SRP for a SRR
srr-to-srs Get SRS for a SRR
srr-to-srx Get SRX for a SRR
srs-to-gsm Get GSM for a SRS
srs-to-srx Get SRX for a SRS
srx-to-srp Get SRP for a SRX
srx-to-srr Get SRR for a SRX
srx-to-srs Get SRS for a SRX
A Google Colaboratory version of most used commands are available in this Colab Notebook . Note that this requires only an active internet connection (no additional downloads are made).
The following notebooks document all the possible features of `pysradb`:
To install stable version using `pip`:
pip install pysradb
Alternatively, if you use conda:
conda install -c bioconda pysradb
This step will install all the dependencies. If you have an existing
environment with a lot of pre-installed packages, conda might be
slow.
Please consider creating a new enviroment for pysradb
:
conda create -c bioconda -n pysradb PYTHON=3.10 pysradb
pandas
requests
tqdm
xmltodict
git clone https://github.com/saketkc/pysradb.git
cd pysradb && pip install -r requirements.txt
pip install -e .
$ pysradb metadata SRP000941 | head
study_accession experiment_accession experiment_title experiment_desc organism_taxid organism_name library_strategy library_source library_selection sample_accession sample_title instrument total_spots total_size run_accession run_total_spots run_total_bases
SRP000941 SRX056722 Reference Epigenome: ChIP-Seq Analysis of H3K27ac in hESC H1 Cells Reference Epigenome: ChIP-Seq Analysis of H3K27ac in hESC H1 Cells 9606 Homo sapiens ChIP-Seq GENOMIC ChIP SRS184466 Illumina HiSeq 2000 26900401 531654480 SRR179707 26900401 807012030
SRP000941 SRX027889 Reference Epigenome: ChIP-Seq Analysis of H2AK5ac in hESC Cells Reference Epigenome: ChIP-Seq Analysis of H2AK5ac in hESC Cells 9606 Homo sapiens ChIP-Seq GENOMIC ChIP SRS116481 Illumina Genome Analyzer II 37528590 779578968 SRR067978 37528590 1351029240
SRP000941 SRX027888 Reference Epigenome: ChIP-Seq Input from hESC H1 Cells Reference Epigenome: ChIP-Seq Input from hESC H1 Cells 9606 Homo sapiens ChIP-Seq GENOMIC RANDOM SRS116483 Illumina Genome Analyzer II 13603127 3232309537 SRR067977 13603127 489712572
SRP000941 SRX027887 Reference Epigenome: ChIP-Seq Input from hESC H1 Cells Reference Epigenome: ChIP-Seq Input from hESC H1 Cells 9606 Homo sapiens ChIP-Seq GENOMIC RANDOM SRS116562 Illumina Genome Analyzer II 22430523 506327844 SRR067976 22430523 807498828
SRP000941 SRX027886 Reference Epigenome: ChIP-Seq Input from hESC H1 Cells Reference Epigenome: ChIP-Seq Input from hESC H1 Cells 9606 Homo sapiens ChIP-Seq GENOMIC RANDOM SRS116560 Illumina Genome Analyzer II 15342951 301720436 SRR067975 15342951 552346236
SRP000941 SRX027885 Reference Epigenome: ChIP-Seq Input from hESC H1 Cells Reference Epigenome: ChIP-Seq Input from hESC H1 Cells 9606 Homo sapiens ChIP-Seq GENOMIC RANDOM SRS116482 Illumina Genome Analyzer II 39725232 851429082 SRR067974 39725232 1430108352
SRP000941 SRX027884 Reference Epigenome: ChIP-Seq Input from hESC H1 Cells Reference Epigenome: ChIP-Seq Input from hESC H1 Cells 9606 Homo sapiens ChIP-Seq GENOMIC RANDOM SRS116481 Illumina Genome Analyzer II 32633277 544478483 SRR067973 32633277 1174797972
SRP000941 SRX027883 Reference Epigenome: ChIP-Seq Input from hESC H1 Cells Reference Epigenome: ChIP-Seq Input from hESC H1 Cells 9606 Homo sapiens ChIP-Seq GENOMIC RANDOM SRS004118 Illumina Genome Analyzer II 22150965 3262293717 SRR067972 9357767 336879612
SRP000941 SRX027883 Reference Epigenome: ChIP-Seq Input from hESC H1 Cells Reference Epigenome: ChIP-Seq Input from hESC H1 Cells 9606 Homo sapiens ChIP-Seq GENOMIC RANDOM SRS004118 Illumina Genome Analyzer II 22150965 3262293717 SRR067971 12793198 460555128
$ pysradb metadata SRP075720 --detailed | head
study_accession experiment_accession experiment_title experiment_desc organism_taxid organism_name library_strategy library_source library_selection sample_accession sample_title instrument total_spots total_size run_accession run_total_spots run_total_bases
SRP075720 SRX1800476 GSM2177569: Kcng4_2la_H9; Mus musculus; RNA-Seq GSM2177569: Kcng4_2la_H9; Mus musculus; RNA-Seq 10090 Mus musculus RNA-Seq TRANSCRIPTOMIC cDNA SRS1467643 Illumina HiSeq 2500 2547148 97658407 SRR3587912 2547148 127357400
SRP075720 SRX1800475 GSM2177568: Kcng4_2la_H8; Mus musculus; RNA-Seq GSM2177568: Kcng4_2la_H8; Mus musculus; RNA-Seq 10090 Mus musculus RNA-Seq TRANSCRIPTOMIC cDNA SRS1467642 Illumina HiSeq 2500 2676053 101904264 SRR3587911 2676053 133802650
SRP075720 SRX1800474 GSM2177567: Kcng4_2la_H7; Mus musculus; RNA-Seq GSM2177567: Kcng4_2la_H7; Mus musculus; RNA-Seq 10090 Mus musculus RNA-Seq TRANSCRIPTOMIC cDNA SRS1467641 Illumina HiSeq 2500 1603567 61729014 SRR3587910 1603567 80178350
SRP075720 SRX1800473 GSM2177566: Kcng4_2la_H6; Mus musculus; RNA-Seq GSM2177566: Kcng4_2la_H6; Mus musculus; RNA-Seq 10090 Mus musculus RNA-Seq TRANSCRIPTOMIC cDNA SRS1467640 Illumina HiSeq 2500 2498920 94977329 SRR3587909 2498920 124946000
SRP075720 SRX1800472 GSM2177565: Kcng4_2la_H5; Mus musculus; RNA-Seq GSM2177565: Kcng4_2la_H5; Mus musculus; RNA-Seq 10090 Mus musculus RNA-Seq TRANSCRIPTOMIC cDNA SRS1467639 Illumina HiSeq 2500 2226670 83473957 SRR3587908 2226670 111333500
SRP075720 SRX1800471 GSM2177564: Kcng4_2la_H4; Mus musculus; RNA-Seq GSM2177564: Kcng4_2la_H4; Mus musculus; RNA-Seq 10090 Mus musculus RNA-Seq TRANSCRIPTOMIC cDNA SRS1467638 Illumina HiSeq 2500 2269546 87486278 SRR3587907 2269546 113477300
SRP075720 SRX1800470 GSM2177563: Kcng4_2la_H3; Mus musculus; RNA-Seq GSM2177563: Kcng4_2la_H3; Mus musculus; RNA-Seq 10090 Mus musculus RNA-Seq TRANSCRIPTOMIC cDNA SRS1467636 Illumina HiSeq 2500 2333284 88669838 SRR3587906 2333284 116664200
SRP075720 SRX1800469 GSM2177562: Kcng4_2la_H2; Mus musculus; RNA-Seq GSM2177562: Kcng4_2la_H2; Mus musculus; RNA-Seq 10090 Mus musculus RNA-Seq TRANSCRIPTOMIC cDNA SRS1467637 Illumina HiSeq 2500 2071159 79689296 SRR3587905 2071159 103557950
SRP075720 SRX1800468 GSM2177561: Kcng4_2la_H1; Mus musculus; RNA-Seq GSM2177561: Kcng4_2la_H1; Mus musculus; RNA-Seq 10090 Mus musculus RNA-Seq TRANSCRIPTOMIC cDNA SRS1467635 Illumina HiSeq 2500 2321657 89307894 SRR3587904 2321657 116082850
$ pysradb srp-to-gse SRP075720
study_accession study_alias
SRP075720 GSE81903
$ pysradb gsm-to-srp GSM2177186
experiment_alias study_accession
GSM2177186 SRP075720
$ pysradb gsm-to-gse GSM2177186
experiment_alias study_alias
GSM2177186 GSE81903
$ pysradb gsm-to-srx GSM2177186
experiment_alias experiment_accession
GSM2177186 SRX1800089
$ pysradb gsm-to-srr GSM2177186
experiment_alias run_accession
GSM2177186 SRR3587529
$ pysradb download -g GSE161707
pysradb
makes it super easy to download datasets from SRA parallely:
Using 8 threads to download:
$ pysradb download -y -t 8 --out-dir ./pysradb_downloads -p SRP063852
Downloads are organized by SRP/SRX/SRR
mimicking the hierarchy of SRA
projects.
$ pysradb metadata SRP000941 --detailed | grep 'study\|RNA-Seq' | pysradb download
This will download all RNA-seq
samples coming from this project.
With aspera-client installed, [pysradb]{.title-ref} can perform ultra fast downloads:
To download all original fastqs with [aspera-client]{.title-ref} installed utilizing 8 threads:
$ pysradb download -t 8 --use_ascp -p SRP002605
Refer to the notebook for (shallow) time benchmarks.
Presentation slides from BOSC (ISMB-ECCB) 2019: https://f1000research.com/slides/8-1183
Choudhary, Saket. "pysradb: A Python Package to Query next-Generation Sequencing Metadata and Data from NCBI Sequence Read Archive." F1000Research, vol. 8, F1000 (Faculty of 1000 Ltd), Apr. 2019, p. 532 (https://f1000research.com/articles/8-532/v1)
@article{Choudhary2019,
doi = {10.12688/f1000research.18676.1},
url = {https://doi.org/10.12688/f1000research.18676.1},
year = {2019},
month = apr,
publisher = {F1000 (Faculty of 1000 Ltd)},
volume = {8},
pages = {532},
author = {Saket Choudhary},
title = {pysradb: A {P}ython package to query next-generation sequencing metadata and data from {NCBI} {S}equence {R}ead {A}rchive},
journal = {F1000Research}
}
Zenodo archive: https://zenodo.org/badge/latestdoi/159590788
Zenodo DOI: 10.5281/zenodo.2306881
Open an issue or join our Slack Channel.
FAQs
A Python package for interacting with SRAdb and downloading datasets from SRA/ENA/GEO
We found that pysradb demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.