Socket
Book a DemoInstallSign in
Socket

pysvgenius

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pysvgenius

A library for text_to_svg, image_to_svg, and SVG resizing and optimization.

pipPyPI
Version
0.1.7
Maintainers
1

✨ Pysvgenius ✨

Text ➜ SVG | Image ➜ SVG | Smart SVG Resizing
Turn your text or images into optimized, scalable SVGs effortlessly.

PyPI Version License Python GitHub Stars

📖 Description

Pysvgenius is a powerful Python library designed for generating and optimizing scalable vector graphics (SVGs). It provides an end‑to‑end workflow that includes:

  • Text‑to‑SVG: Generate SVG illustrations directly from text prompts.

  • Image‑to‑SVG: Convert raster images into clean, scalable vector graphics.

  • Smart SVG Optimization & Resizing: Optimize paths and file size while preserving visual quality.

With Pysvgenius, you can effortlessly create high‑quality SVGs for design, AI applications, and modern web projects, ensuring both scalability and efficiency.

🖼️ Demo

InputText-to-ImageImage-to-SVGOptimized SVG
"A lighthouse overlooking the ocean"Generated ImageSVG ConversionOptimized SVG
"A serene Asian dragon"Dragon ImageDragon SVGDragon Optimized
"Futuristic skyscraper with neon lights"Skyscraper ImageSkyscraper SVGSkyscraper Optimized

🖥️ System Requirements

To install and run pysvgenius smoothly, we recommend the following minimum setup:

  • OS: Linux / macOS / Windows 10+ (x86_64)
  • Python: 3.10 or higher
  • CPU: 4 cores (Intel i5/Ryzen 5 or higher)
  • RAM: 16 GB minimum (24 GB recommended for large models)
  • Storage: ~30 GB for models & caches
  • GPU: NVIDIA GPU with CUDA 11+ for faster generation and DiffVG optimization
    • Recommended: 16 GB VRAM or more

Tip: CPU-only mode works but is slower for image generation and optimization.

📦 Installation

# Basic installation
pip install pysvgenius

# With OpenAI CLIP support
pip install git+https://github.com/openai/CLIP.git

🔧 (Optional) Build DiffVG and Diff-JPEG for Optimizer

To use advanced SVG optimization features, you need to build diffvg from source.

# 1. DiffVG (SVG optimizer)
git clone https://github.com/BachiLi/diffvg.git
cd diffvg

git submodule update --init --recursive

pip install svgwrite
pip install svgpathtools
pip install cssutils
pip install numba
pip install torch-tools
pip install visdom

python setup.py install

# 2. Diff-JPEG (Differentiable JPEG compression)
pip install git+https://github.com/necla-ml/Diff-JPEG

🚀 Usage

1️⃣ Text-to-SVG Generation

Generate SVGs directly from text prompts using the built-in generator:

from pysvgenius.generator import load_generator
from pysvgenius.common import registry

# List all available generator models
print(registry.list_generator())  

# Load the generator (example: SDXL-Turbo)
generator = load_generator("sdxl-turbo")

# Generate 5 SVGs from a text prompt
images = generator("A lighthouse overlooking the ocean", num_images=5)

# images is a list of PIL.Image objects or SVG paths depending on the mode
for idx, img in enumerate(images):
    img.save(f"lighthouse_{idx}.png")

2️⃣ Image-to-SVG Converter

Convert images to SVG paths with the built-in converters:

from pysvgenius.converter import load_converter
from pysvgenius.common import registry

# List all available converters
print(registry.list_converter())

# Load the converter (example: VTracer Binary Search)
converter = load_converter("vtracer-binary-search")

# Convert an image to SVG paths
# `image` can be a PIL.Image or a path to an image
svgs = converter(image, limit=10000)

# `svgs` is a list of SVG path strings
for idx, svg in enumerate(svgs):
    with open(f"output_{idx}.svg", "w") as f:
        f.write(svg)

3️⃣ SVG Ranking (Optional)

After generating SVG candidates, you can rank them using different strategies:

  • Aesthetic Ranker → Scores based on visual aesthetics.
  • SigLIP Ranker → Scores based on semantic similarity to a text prompt.
from pysvgenius import setup_path
from pysvgenius.ranker import load_ranker
from pysvgenius.common import registry

# ✅ Setup paths (run ONCE at the start of your script)
setup_path()

# Check available rankers
print(registry.list_ranker())

# Load rankers
aesthetic_ranker = load_ranker("aesthetic")
siglip_ranker = load_ranker("siglip")

# Rank purely by visual aesthetics (top 5 SVGs)
aesthetic_results, score = aesthetic_ranker(svgs=svgs, top_k=5)

# Rank by semantic similarity to a text prompt (top 1 SVG)
prompt = "a serene Asian dragon flying over green mountains"
siglip_results, score = siglip_ranker(svgs=svgs, prompt=prompt, top_k=1)

print("Aesthetic Ranking:", aesthetic_results)
print("SigLIP Ranking:", siglip_results)

4️⃣ Optimize SVGs with DiffVG (Optional)

from pysvgenius.optimizer import load_optimizer
from pysvgenius import load_config, setup_path

# Initialize paths and configuration
setup_path()                     # Run once before loading any model
config = load_config()           # Load default configuration
args = config.optimizer_cfg["diffvg"]["args"]  # Get DiffVG optimizer arguments

# Load the DiffVG Optimizer
optimizer = load_optimizer("diffvg")

# Optimize the SVG based on the original image
# ⚠ Note: 'limit' should match the converter's limit for the best results
optimized_svg = optimizer(
    svg=svgs[0],         # Input SVG
    image=image,         # Original image for comparison
    args=args,           # Optimizer arguments
    limit=20000          # Sampling points, ideally the same as converter's limit
)

📂 Project Structure

pysvgenius/
├── src/
│   ├── generator/          # Text-to-image generation models
│   │   ├── sdxl_turbo_generator.py
│   │   ├── factory.py
│   │   └── base.py
│   ├── converter/          # Image-to-SVG conversion
│   │   ├── vtracer.py
│   │   ├── factory.py
│   │   └── base.py
│   ├── ranker/            # Aesthetic & similarity ranking
│   │   ├── aesthetic_ranker.py
│   │   ├── siglip_ranker.py
│   │   ├── paligemma_ranker.py
│   │   ├── factory.py
│   │   └── base.py
│   ├── optimizer/         # SVG optimization with DiffVG
│   │   ├── diffvg_optimizer.py
│   │   ├── factory.py
│   │   └── base.py
│   ├── utils/             # Utilities and helpers
│   │   ├── image_utils.py
│   │   ├── svg_utils.py
│   │   └── logger.py
│   └── services/          # Service layer
├── configs/               # Configuration files
│   └── configs.yaml
├── models/               # Pre-trained model cache
├── data/                 # Test data and results
│   ├── test/            # Sample input files
│   └── results/         # Output results
├── notebooks/            # Example notebooks

📚 References & Acknowledgments

This project builds upon the amazing work of the following projects and research:

  • VTracer – Vector image tracer

  • CLIP – Connecting vision and language

  • Improved Aesthetic Predictor

  • DiffVG – Differentiable Vector Graphics

    • Li, Tzu-Mao, et al. "Differentiable Vector Graphics Rasterization for Editing and Learning."
      Paper | GitHub
  • Hugging Face Transformers – Model hosting and inference

  • Kaggle: Drawing with LLMs – Discussion and inspiration

🤝 Contributing

Contributions are welcome! Please open an issue or submit a pull request.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.