
Security News
Insecure Agents Podcast: Certified Patches, Supply Chain Security, and AI Agents
Socket CEO Feross Aboukhadijeh joins Insecure Agents to discuss CVE remediation and why supply chain attacks require a different security approach.
python-alfresco-api
Advanced tools
Python Client for all Alfresco Content Services REST APIs, with Pydantic v2 Models, and Event Support
A Complete Python client package for developing python code and apps for Alfresco. Great for doing AI development with Python based LangChain, LlamaIndex, neo4j-graphrag, etc. Also great for creating MCP servers (see python-alfresco-mcp-server).
Note this uses the remote Alfresco REST APIs. Not for in-process development in Alfresco.
A modern, type-safe Python client library for Alfresco Content Services REST APIs with dual model architecture (attrs + Pydantic) and async support.
This is a MCP Server that uses Python Alfresco API
pip install python-alfresco-api
Best Practice: Always use a virtual environment to avoid dependency conflicts
# Clone the repository
git clone https://github.com/stevereiner/python-alfresco-api.git
cd python-alfresco-api
# Create virtual environment
python -m venv venv
# Activate virtual environment
venv\Scripts\activate
# Verify activation (should show venv path)
where python
# Install dependencies
pip install -r requirements.txt
# Deactivate when done
deactivate
# Clone the repository
git clone https://github.com/stevereiner/python-alfresco-api.git
cd python-alfresco-api
# Create virtual environment
python3 -m venv venv
# Activate virtual environment
source venv/bin/activate
# Verify activation (should show venv path)
which python
# Install dependencies
pip install -r requirements.txt
# Deactivate when done
deactivate
Install the package form PyPI use:
pip install python-alfresco-api
For development of your project using python-alfresco-api to have debugging with source:
# After setting up virtual environment above
git clone https://github.com/your-org/python-alfresco-api.git
cd python-alfresco-api
# Activate your virtual environment first
# Windows: venv\Scripts\activate
# Linux/macOS: source venv/bin/activate
# Install in development mode
pip install -e .
If you don't have an Alfresco server installed you can get a docker for the Community version from Github
git clone https://github.com/Alfresco/acs-deployment.git
Start Alfresco with Docker Compose
cd acs-deployment/docker-compose
Note: you will likely need to comment out activemq ports other than 8161 in community-compose.yaml
ports:
- "8161:8161" # Web Console
#- "5672:5672" # AMQP
#- "61616:61616" # OpenWire
#- "61613:61613" # STOMP
docker-compose -f community-compose.yaml up
For easy configuration, copy the sample environment file:
# Windows
copy sample-dot-env.txt .env
# Mac and Linux
cp sample-dot-env.txt .env
# Edit .env and your Alfresco settings
The factory pattern provides shared authentication and centralized configuration:
from python_alfresco_api import ClientFactory
# Automatic configuration (loads from .env file or environment variables)
factory = ClientFactory() # Uses ALFRESCO_URL, ALFRESCO_USERNAME, etc.
# Or explicit configuration
factory = ClientFactory(
base_url="http://localhost:8080",
username="admin",
password="admin"
)
Note 1: the priority order of ClientFactory parameters: 1. in auth_util passed in, 2. in other parameters passed into ClientFactory, 3. in enviroment .env, etc.
Note 2. For timeout, if not in 1-3, no default will be used. The settings for tickets or your system will be used.
# Create individual clients (all share same authentication session)
auth_client = factory.create_auth_client()
core_client = factory.create_core_client()
search_client = factory.create_search_client()
workflow_client = factory.create_workflow_client()
discovery_client = factory.create_discovery_client()
model_client = factory.create_model_client()
search_sql_client = factory.create_search_sql_client() # SOLR admin only
# Can also use a master client like setup with all clients initialized
master_client = factory.create_master_client()
For standard Alfresco authentication (recommended):
from python_alfresco_api import AuthUtil, ClientFactory
# Primary authentication pattern - Basic Auth with Alfresco
auth_util = AuthUtil(
base_url="http://localhost:8080",
username="admin",
password="admin"
)
Note 1: the priority order of ClientFactory parameters: 1. in auth_util passed in, 2. in other parameters passed into ClientFactory, 3. in enviroment .env, etc.
Note 2. For timeout, if not in 1-3, no default will be used. The settings for tickets or your system will be used.
# Use with factory for shared authentication
factory = ClientFactory(auth_util=auth_util)
clients = factory.create_all_clients()
Alternative Authentication:
OAuth2AuthUtil is available for enterprise OAuth2-based authentication but has not been live testedimport asyncio
from python_alfresco_api import ClientFactory
async def main():
factory = ClientFactory(
base_url="http://localhost:8080",
username="admin",
password="admin"
)
# Create core client for node operations
core_client = factory.create_core_client()
# Sync node operation
sync_node = core_client.get_node("-my-")
print(f"Sync: User folder '{sync_node.entry.name}'")
# Async node operation
async_node = await core_client.get_node_async("-my-")
print(f"Async: User folder '{async_node.entry.name}'")
# Run the async example
asyncio.run(main())
Quick examples of the most common operations. 👉 For complete coverage, see 📖 Essential Operations Guide
from python_alfresco_api import ClientFactory
from python_alfresco_api.utils import content_utils_highlevel
factory = ClientFactory(base_url="http://localhost:8080", username="admin", password="admin")
core_client = factory.create_core_client()
# Create folder (High-Level Utility)
folder_result = content_utils_highlevel.create_folder_highlevel(
core_client=core_client,
name="My Project Folder",
parent_id="-my-"
)
# Upload document with auto-versioning
document_result = content_utils_highlevel.create_and_upload_file_highlevel(
core_client=core_client,
file_path="/path/to/document.pdf",
parent_id=folder_result['id']
)
from python_alfresco_api.utils import search_utils
search_client = factory.create_search_client()
# Simple text search (already optimized!)
results = search_utils.simple_search(
search_client=search_client,
query_str="finance AND reports",
max_items=25
)
# Download document content
content_response = core_client.nodes.get_content(node_id=document_id)
# Save to file
with open("downloaded_document.pdf", "wb") as file:
file.write(content_response.content)
from python_alfresco_api.utils import content_utils_highlevel
# Get node properties and details
node_info = content_utils_highlevel.get_node_info_highlevel(
core_client=core_client,
node_id=document_id
)
print(f"Title: {node_info.get('properties', {}).get('cm:title', 'No title')}")
# Update node properties
update_request = {
"properties": {
"cm:title": "Updated Document Title",
"cm:description": "Updated via Python API"
}
}
updated_node = core_client.nodes.update(node_id=document_id, request=update_request)
from python_alfresco_api.utils import version_utils_highlevel
# Checkout document (lock for editing)
checkout_result = version_utils_highlevel.checkout_document_highlevel(
core_client=core_client,
node_id=document_id
)
# Later: Checkin with updated content (create new version)
checkin_result = version_utils_highlevel.checkin_document_highlevel(
core_client=core_client,
node_id=document_id,
content="Updated document content",
comment="Fixed formatting and added new section"
)
| Resource | Purpose | What You'll Find |
|---|---|---|
| 📖 Essential Operations Guide | Complete operation coverage | All operations with both high-level utilities and V1.1 APIs |
| 📁 examples/operations/ | Copy-paste examples | Windows-compatible, production-ready code |
| 🧪 tests/test_mcp_v11_true_high_level_apis_fixed.py | MCP Server patterns | 15 operations with sync/async patterns |
| 🧪 tests/test_highlevel_utils.py | High-level utilities testing | Real Alfresco integration examples |
| Example File | Key Operations |
|---|---|
| upload_document.py | Document upload, automatic versioning, batch uploads |
| versioning_workflow.py | Checkout → Edit → Checkin workflow, version history |
| basic_operations.py | Folder creation, CRUD operations, browsing, deletion |
| search_operations.py | Content search, metadata queries, advanced search |
V1.1 implements a dual model system with conversion utilities:
| Component | Model Type | Purpose |
|---|---|---|
| Raw Client Models | @_attrs_define | Complete OpenAPI domain models (RepositoryInfo, NodeEntry, etc.) |
| Pydantic Models | BaseModel | AI/LLM integration, validation, type safety |
| Conversion Utils | Bridge utilities | Transformation between attrs ↔ Pydantic |
For detailed guidance, see 📖 Pydantic Models Guide and 🔄 Conversion Utilities Design.
# ✅ V1.1: Two model systems with conversion utilities
from python_alfresco_api.models.alfresco_core_models import NodeBodyCreate # Pydantic
from python_alfresco_api.raw_clients.alfresco_core_client.models import NodeBodyCreate as AttrsNodeBodyCreate # attrs
from python_alfresco_api.clients.conversion_utils import pydantic_to_attrs_dict
# 1. Use Pydantic for validation and AI integration
pydantic_model = NodeBodyCreate(name="document.pdf", nodeType="cm:content")
# 2. Convert for raw client usage
factory = ClientFactory()
core_client = factory.create_core_client()
# Option A: Manual conversion via model_dump()
result = core_client.create_node(pydantic_model.model_dump())
# Option B: Conversion utilities (V1.1)
attrs_dict = pydantic_to_attrs_dict(pydantic_model, target_class_name="NodeBodyCreate")
result = core_client.create_node(attrs_dict)
# 3. Raw clients return attrs-based domain models
repository_info = discovery_client.get_repository_information() # Returns attrs RepositoryInfo
# Convert to dict for further processing
repo_dict = repository_info.to_dict()
V1.2 will migrate raw client models from attrs to Pydantic v2:
# 🎯 V1.2 Target: Single Pydantic model system
from python_alfresco_api.raw_clients.alfresco_core_client.models import NodeBodyCreate # Will be Pydantic!
# No conversion needed - everything is Pydantic BaseModel
pydantic_model = NodeBodyCreate(name="document.pdf", nodeType="cm:content")
result = core_client.create_node(pydantic_model) # Direct usage!
Notes
from python_alfresco_api.activemq_events import AlfrescoActiveMQEventClient
# Create event client
event_client = AlfrescoActiveMQEventClient(
activemq_host="localhost",
activemq_port=61616,
username="admin",
password="admin"
)
# Register event handler
async def node_created_handler(notification):
print(f"Node created: {notification.nodeId}")
event_client.register_event_handler("alfresco.node.created", node_created_handler)
# Start listening
await event_client.connect()
await event_client.start_listening()
from python_alfresco_api.event_client import AlfrescoEventClient
# Unified event client (auto-detects available systems)
event_client = AlfrescoEventClient()
# Works with both Community (ActiveMQ) and Enterprise (Event Gateway)
await event_client.create_subscription("node-events")
await event_client.start_listening()
For complete development documentation including the 3-step generation process (Pydantic models → HTTP clients → High-level APIs), see 📖 Package Developers Guide.
For development, testing, and contributing:
pip install -r requirements-dev.txt
For most development work on python-alfresco-api, you can develop directly without regenerating code:
git clone https://github.com/stevereiner/python-alfresco-api.git
cd python-alfresco-api
# Install in development mode
pip install -e .
Note: For proper pytest execution, work from the source directory with
pip install -e .rather than testing from separate directories. This avoids import path conflicts.
cd python-alfresco-api
# Simple - just run all tests pytest
pytest
# Run all tests with coverage
pytest --cov=python_alfresco_api --cov-report=html
# Custom test runner with additional features
python run_tests.py
# Features:
# - Environment validation (venv, dependencies)
# - Colored output with progress tracking
# - Test selection for 44%+ coverage baseline
# - Performance metrics (client creation speed)
# - Live Alfresco server detection
# - HTML coverage reports (htmlcov/index.html)
# - Test summary with next steps
To run tests against a live Alfresco server (Note: This package was developed and tested with Community Edition)
# Run one test (test live with Alfresco)
pytest tests/test_mcp_v11_true_high_level_apis_fixed.py -v
python-alfresco-api/
├── python_alfresco_api/
│ ├── __init__.py # Main exports
│ ├── auth_util.py # Authentication utility
│ ├── client_factory.py # Client factory pattern
│ ├── clients/ # Individual API clients + utilities
│ │ ├── auth_client.py
│ │ ├── core_client.py
│ │ ├── discovery_client.py
│ │ ├── search_client.py
│ │ ├── workflow_client.py
│ │ ├── model_client.py
│ │ ├── search_sql_client.py
│ │ └── conversion_utils.py # Pydantic ↔ attrs conversion utilities
│ ├── models/ # Pydantic v2 models (available for separate use)
│ │ ├── alfresco_auth_models.py
│ │ ├── alfresco_core_models.py
│ │ ├── alfresco_discovery_models.py
│ │ ├── alfresco_search_models.py
│ │ ├── alfresco_workflow_models.py
│ │ ├── alfresco_model_models.py
│ │ └── alfresco_search_sql_models.py
│ ├── raw_clients/ # Generated HTTP clients
│ ├── utils/ # Utility functions
│ │ ├── content_utils.py
│ │ ├── node_utils.py
│ │ ├── search_utils.py
│ │ ├── version_utils.py
│ │ └── mcp_formatters.py
│ └── events/ # Event system (Community + Enterprise)
│ ├── __init__.py # Event exports
│ ├── event_client.py # Unified event client (AlfrescoEventClient)
│ └── models.py # Event models (EventSubscription, EventNotification)
├── config/ # Code generation configurations
│ ├── auth.yaml # Auth API config → auth_client
│ ├── core.yaml # Core API config → core_client
│ ├── discovery.yaml # Discovery API config → discovery_client
│ ├── search.yaml # Search API config → search_client
│ ├── workflow.yaml # Workflow API config → workflow_client
│ ├── model.yaml # Model API config → model_client
│ ├── search_sql.yaml # Search SQL API config → search_sql_client
│ ├── general.yaml # Unified config → alfresco_client
│ └── README.md # Configuration documentation
├── openapi/ # OpenAPI specifications (checked in)
│ ├── openapi2/ # Original OpenAPI 2.0 specs
│ ├── openapi2-processed/ # Cleaned OpenAPI 2.0 specs
│ └── openapi3/ # Converted OpenAPI 3.0 specs
├── tests/ # Comprehensive test suite
├── scripts/ # Generation scripts
├── docs/ # Comprehensive documentation
│ ├── PYDANTIC_MODELS_GUIDE.md # Complete Pydantic models guide
│ ├── CLIENT_TYPES_GUIDE.md # Client architecture guide
│ ├── CONVERSION_UTILITIES_DESIGN.md # Model conversion utilities
│ ├── REQUEST_TYPES_GUIDE.md # Node & Search request documentation
│ └── API_DOCUMENTATION_INDEX.md # Complete API reference
├── examples/ # Working usage examples
├── requirements.txt # Runtime dependencies
├── requirements-dev.txt # Development dependencies
├── run_tests.py # Test runner with nice display
└── README.md # This file
For development workflows, code generation, testing, and contribution guidelines, see 📖 Package Developers Guide.
pytestThis project is licensed under the Apache License 2.0 - see the LICENSE file for details.
If this project helps you, please consider giving it a star! ⭐
FAQs
Python Client for all Alfresco Content Services REST APIs, with Pydantic v2 Models, and Event Support
We found that python-alfresco-api demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
Socket CEO Feross Aboukhadijeh joins Insecure Agents to discuss CVE remediation and why supply chain attacks require a different security approach.

Security News
Tailwind Labs laid off 75% of its engineering team after revenue dropped 80%, as LLMs redirect traffic away from documentation where developers discover paid products.

Security News
The planned feature introduces a review step before releases go live, following the Shai-Hulud attacks and a rocky migration off classic tokens that disrupted maintainer workflows.