Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

python-easy-json

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

python-easy-json

A simple, yet powerful, JSON/python dictionary to object deserialization

  • 1.2.0
  • PyPI
  • Socket score

Maintainers
1

|badge1| |badge2| |badge3|

.. |badge1| image:: https://github.com/robabram/python-easy-json/actions/workflows/tests.yaml/badge.svg :alt: Unittest Completion Status .. |badge2| image:: https://raw.githubusercontent.com/robabram/python-easy-json/coverage-badge/coverage.svg?raw=true :alt: Code Coverage Status .. |badge3| image:: https://img.shields.io/badge/python-v3.7%20|%20v3.8%20|%20v3.9%20|%20v3.10%20|%20v3.11%20|%20v3.12-blue :alt: Python v3.7, v3.8, v3.9, v3.10, v3.11, v3.12


python-easy-json: simple, yet powerful, JSON/python dictionary to object deserialization


python-easy-json is a recursive JSON to python object deserializer with support for defining data models and casting data to python using type hint annotations.

The python-easy-json JSONObject class can be used to:

  • Deserialize: Recursively convert a JSON string or python dictionary to a python object
  • Serialize: Export the object data to a JSON string or python dictionary
  • Type Hinting Integration: Convert JSON values to specific types by creating models and type hints.
  • Define Data Models: Create simple, yet powerful data models for working with data from any source
  • IDE Auto Completion: IDEs with auto-completion and support python type hinting will auto-complete model properties

Get It Now

$ pip install python-easy-json

Why a another JSON to Object library?

After years of python development, I grew tired of receiving data from APIs, database, csv files and so on and working with them as python dictionaries. The "simple" JSON deserializer library options I saw really didn't fit how easy I felt that deserializing to a JSON object should be. Additionally, I wanted to create simple data model classes and using python "Type Hinting" to define property value types.

Simple Examples

Just pass a JSON string or python dict argument to the JSONObject constructor. In this example, we can switch from using dict key lookups to an array of JSONObjects.

::

for row in results:
    if row['the_key'][0]['another_key'] == 'the_value':
        ...

With JSONObject this may be re-written as below, using list comprehension. This makes the code more readable and less cluttered when working with complex dictionary structures in code.

::

from python_easy_json import JSONObject

for row in [JSONObject(r) for r in results]:
    if row.the_key[0].another_key == 'the_value':
        ...

Data from a JSON String

::

from python_easy_json import JSONObject

# JSON string
obj = JSONObject('{"test_key": "test_value"}')
print(obj.to_json())

{"test_key": "test_value"}

Data from a python dictionary

::

# Python dictionary
obj = JSONObject({'test_key': 'test_value'})
print(obj.to_json())

{"test_key": "test_value"}

Data Models For Anything

Using the python-easy-json JSONObject class, you can create data models, including deeply nested models and arrays, from any JSON string or dictionary. Additionally, python "Type Hints" may be used to cast values to the type defined by the type hint annotations.

As a bonus; IDEs with auto-completion and support for python type hinting will auto-complete model properties as you type.

This example shows how to define nested/child data models, including lists of nested data models.

::

# Represents json from 'tests/test_data/nested_data_1.json'
class CakeToppingTypeModel(JSONObject):
    id: int = None
    type: str = None    

class CakeBatterTypeModel(JSONObject):
    id: int = None
    type: str = None    

class CakeBatterModel(JSONObject):
    batter: List[CakeBatterTypeModel] = None    

class CakeModel(JSONObject):
    id: str = None
    type: str = None
    name: str = None
    ppu: float = None
    batters: CakeBatterModel = None
    topping: List[CakeToppingTypeModel]

cake = CakeModel(data)
print(f'Cake: {cake.name} ({len(cake.batters.batter)} ingredents).') 

Cake: Devil's Food Cake (4 ingredients).

Type Hints Automatically Convert JSON Values

If a model has been defined and the properties have python Type Hint annotations, the JSONObject can convert values to the annotation types.

::

from datetime import datetime 

class TimestampModel(JSONObject):
    id: int = None
    timestamp: datetime = None

data = {'id': "123", "timestamp": "2022-09-19 10:11:01.123456"}
obj = TimestampModel(data, cast_types=True)

if obj.id > 0:
    print(f"ID: {obj.id}: {obj.timestamp.strftime('%b %d, %Y @ %H:%M:%S %p')}")

$ ID: 123: Sep 19, 2022 @ 10:11:01 AM

Documentation

JSONObject Class

::

JSONObject.__init__(data: Union[Dict, str, None] = None, cast_types: bool = False, ordered: bool = False)
    Load the dictionary or JSON string data argument into ourselves as properties.
    :param data: Dictionary or valid JSON string.
    :param cast_types: If properties of this class are type annotated, try to cast them.
    :param ordered: Use OrderedDict() if set, otherwise use dict(). For python <= 3.6.

JSONObject.to_json(indent: int = None)
    Export stored data as a json string.
    :param indent: Positive integer value for formatting JSON string indenting.
    :returns: JSON string

JSONObject.to_dict(recursive: bool = True, dates_to_str: bool = False)        
    Export stored data as a python dictionary object.
    :param recursive: Boolean, recursively convert nested JSONObjects to a dict
    :param dates_to_str: Boolean, convert all date or datetime values to string.
    :returns: dictionary object

JSONObject.update([Dict|List|Tuple]) accepts either a dictionary object or an iterable of key/value
    pairs (as tuples or other iterables of length two). If keyword arguments are specified, the dictionary
    is then updated with those key/value pairs: obj.update(sky=1, cloud=2).

Plus Operator: Two JSONObjects may be merged using the plus (+) operator: obj = obj + other_obj.

Number of Properties: The number of managed properties may be determined by using the Python 'len()'
    function: len(obj) == 5.

License

MIT licensed. See the bundled LICENSE <https://github.com/robabram/python-easy-json/blob/main/LICENSE> file for more details.

Unittest Data

Testing JSON data for examples and unittests sourced from: https://opensource.adobe.com/Spry/samples/data_region/JSONDataSetSample.html

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc