๐Ÿš€ Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more โ†’
Socket
Book a DemoInstallSign in
Socket

python-result-type

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

python-result-type

A functional programming Result type for Python with Success/Failure variants and async support

1.2.1
PyPI
Maintainers
1

Python Result Type

PyPI version Python Support License: MIT Tests

A functional programming Result type for Python, inspired by Rust's Result<T, E> and similar to PyMonad's Either, but with more intuitive naming (Success/Failure instead of Right/Left).

๐Ÿš€ Features

  • Intuitive API: Success and Failure instead of cryptic Right/Left
  • Rust-like Aliases: Optional Ok and Err aliases for Rust developers
  • Type Safe: Full generic type support with Result[T, E]
  • Chainable Operations: Use .then() method or >> operator for clean chaining
  • Exception Safety: Automatic exception handling in chained operations
  • Async/Await Support: Full async support with AsyncResult wrapper
  • Zero Dependencies: Pure Python with no external dependencies
  • Comprehensive: Includes helper functions and decorators for common patterns
  • Well Tested: 100% test coverage with extensive edge case testing

๐Ÿ“ฆ Installation

pip install python-result-type

๐ŸŽฏ Quick Start

Basic Usage

from result_type import Success, Failure, Result

def divide(a: float, b: float) -> Result[float, str]:
    if b == 0:
        return Failure("Division by zero")
    return Success(a / b)

# Success case
result = divide(10, 2)
if result.is_success():
    print(f"Result: {result.value}")  # Result: 5.0
else:
    print(f"Error: {result.error}")

# Failure case  
result = divide(10, 0)
if result.is_failure():
    print(f"Error: {result.error}")  # Error: Division by zero

Chaining Operations

Chain operations that can fail using .then() or the >> operator:

from result_type import Success, Failure

def divide(a: float, b: float) -> Result[float, str]:
    if b == 0:
        return Failure("Division by zero")
    return Success(a / b)

def multiply_by_2(x: float) -> Result[float, str]:
    return Success(x * 2)

def subtract_1(x: float) -> Result[float, str]:
    if x < 1:
        return Failure("Result would be negative")
    return Success(x - 1)

# Method 1: Using .then() method
result = (
    divide(10, 2)
    .then(multiply_by_2)
    .then(subtract_1)
    .map(lambda x: x + 5)
)

# Method 2: Using >> operator (cleaner syntax)
result = divide(10, 2) >> multiply_by_2 >> subtract_1

# Method 3: Mixed approach
result = (
    divide(10, 2)
    >> multiply_by_2
    .map(lambda x: x + 10)  # Transform without failure
    >> subtract_1
)

if result.is_success():
    print(f"Final result: {result.value}")
else:
    print(f"Error occurred: {result.error}")

Safe Function Calls

Automatically handle exceptions with safe_call:

from result_type import safe_call

# Wrap risky function calls
result = safe_call(
    lambda: 10 / 0,
    "Math operation failed"
)

if result.is_failure():
    print(result.error)  # "Math operation failed: division by zero"

# Use as decorator
from result_type import safe_call_decorator

@safe_call_decorator("Database error")
def risky_database_operation():
    # Some operation that might throw
    return fetch_user_from_db()

result = risky_database_operation()

Rust-like Aliases (Ok/Err)

For developers familiar with Rust's Result<T, E>, this library provides Ok and Err aliases for Success and Failure:

from result_type import Ok, Err, ok, err

def divide_rust_style(a: float, b: float):
    if b == 0:
        return Err("Division by zero")
    return Ok(a / b)

# Usage is identical to Success/Failure
result = divide_rust_style(10, 2)
if result.is_success():
    print(f"Result: {result.value}")  # Result: 5.0

# Chain operations using Rust-style
def multiply_by_2(x):
    return Ok(x * 2)

def validate_positive(x):
    if x > 0:
        return Ok(x)
    return Err("Must be positive")

result = Ok(5) >> multiply_by_2 >> validate_positive
if result.is_success():
    print(f"Final: {result.value}")  # Final: 10

# Helper functions with Rust naming
success_result = ok(42)      # Same as Success(42)
error_result = err("oops")   # Same as Failure("oops")

# Mix and match - they're the same types!
mixed_result = Ok(10) >> (lambda x: Success(x * 2))  # Works perfectly
print(Ok(42) == Success(42))  # True

๐Ÿ“š Complete API Reference

Core Types

Result[T, E]

Abstract base class representing either success or failure.

Methods:

  • is_success() -> bool - Check if result is Success
  • is_failure() -> bool - Check if result is Failure
  • then(func: Callable[[T], Result[U, E]]) -> Result[U, E] - Chain operations
  • map(func: Callable[[T], U]) -> Result[U, E] - Transform success value
  • map_error(func: Callable[[E], F]) -> Result[T, F] - Transform error value
  • unwrap() -> T - Extract value or raise exception
  • unwrap_or(default: T) -> T - Extract value or return default
  • unwrap_or_else(func: Callable[[E], T]) -> T - Extract value or compute from error

Success[T]

Represents successful result containing a value.

success_result = Success(42)
print(success_result.value)  # 42
print(success_result.is_success())  # True

Failure[E]

Represents failed result containing an error.

failure_result = Failure("Something went wrong")
print(failure_result.error)  # "Something went wrong"
print(failure_result.is_failure())  # True

Rust-like Aliases

Ok and Err

Type aliases for Success and Failure respectively.

from result_type import Ok, Err

# These are identical to Success/Failure
ok_result = Ok(42)          # Same as Success(42)
err_result = Err("error")   # Same as Failure("error")

ok(value: T) -> Success[T] and err(error: E) -> Failure[E]

Helper functions with Rust-style naming.

from result_type import ok, err

result = ok(42)        # Same as success(42) or Success(42)
error = err("oops")    # Same as failure("oops") or Failure("oops")

Helper Functions

success(value: T) -> Success[T]

Create a Success result.

from result_type import success
result = success(42)  # Same as Success(42)

failure(error: E) -> Failure[E]

Create a Failure result.

from result_type import failure
result = failure("error")  # Same as Failure("error")

safe_call(func: Callable[[], T], error_msg: str = None) -> Result[T, str]

Safely call a function that might raise exceptions.

from result_type import safe_call

result = safe_call(lambda: risky_operation())
if result.is_failure():
    print(f"Operation failed: {result.error}")

safe_call_decorator(error_msg: str = None)

Decorator version of safe_call.

from result_type import safe_call_decorator

@safe_call_decorator("API call failed")
def call_external_api():
    return requests.get("https://api.example.com").json()

result = call_external_api()  # Returns Result[dict, str]

๐Ÿ”„ Chaining Operations

Error Propagation

When chaining operations, errors automatically propagate:

result = (
    Success(10)
    >> (lambda x: Failure("Something went wrong"))  # This fails
    >> (lambda x: Success(x * 2))  # This won't execute
    >> (lambda x: Success(x + 1))  # Neither will this
)

print(result.error)  # "Something went wrong"

Exception Handling in Chains

Exceptions in chained operations are automatically converted to Failure:

def risky_operation(x: int) -> Result[int, str]:
    return Success(x / 0)  # This will raise ZeroDivisionError

result = Success(10) >> risky_operation

print(result.is_failure())  # True  
print(type(result.error))   # <class 'ZeroDivisionError'>

๐Ÿ”„ Async/Await Support

The library includes full async/await support for modern Python applications with the AsyncResult wrapper:

Basic Async Usage

import asyncio
from result_type import Success, Failure, Result
from result_type.async_result import AsyncResult, async_safe_call

async def fetch_user(user_id: int) -> Result[dict, str]:
    await asyncio.sleep(0.1)  # Simulate API call
    if user_id <= 0:
        return Failure("Invalid user ID")
    return Success({"id": user_id, "name": f"User {user_id}"})

# Use async operations
result = await fetch_user(123)
if result.is_success():
    print(f"Found user: {result.value}")

Async Chaining

Chain async and sync operations seamlessly:

async def fetch_user_posts(user: dict) -> Result[list, str]:
    await asyncio.sleep(0.1)
    return Success([f"Post {i}" for i in range(3)])

def format_summary(posts: list) -> Result[str, str]:
    return Success(f"User has {len(posts)} posts")

# Chain async and sync operations
pipeline = (AsyncResult(fetch_user(123))
           .then_async(fetch_user_posts)    # Async operation
           .then_sync(format_summary))      # Sync operation

result = await pipeline.resolve()
if result.is_success():
    print(result.value)  # "User has 3 posts"

Async Safe Calls

Handle async exceptions safely:

from result_type.async_result import async_safe_call, async_safe_call_decorator

# Function approach
async def risky_api_call():
    # Might raise an exception
    return await some_external_api()

result = await async_safe_call(risky_api_call, "API Error")

# Decorator approach
@async_safe_call_decorator("Database Error")
async def database_operation():
    return await db.fetch_data()

result = await database_operation()  # Returns Result[Any, str]

Gathering Multiple Async Results

Process multiple async operations concurrently:

from result_type.async_result import gather_results

async def fetch_data(source: str) -> Result[str, str]:
    await asyncio.sleep(0.1)
    return Success(f"Data from {source}")

# Gather results - stops at first failure
async_operations = [
    AsyncResult(fetch_data("source1")),
    AsyncResult(fetch_data("source2")),
    AsyncResult(fetch_data("source3")),
]

combined = await gather_results(*async_operations)
if combined.is_success():
    print(combined.value)  # ["Data from source1", "Data from source2", "Data from source3"]

Converting Regular Awaitables

Convert any awaitable to an AsyncResult:

from result_type.async_result import from_awaitable

async def regular_async_function():
    return {"data": "success"}

# Convert to AsyncResult with error handling
async_result = await from_awaitable(regular_async_function(), "Operation failed")
result = await async_result.resolve()

๐Ÿ†š Comparison with Alternatives

vs PyMonad Either

# PyMonad Either (less intuitive)
from pymonad.either import Left, Right

result = Right(42)  # Success
result = Left("error")  # Failure

# This library (more readable)
from result_type import Success, Failure

result = Success(42)  # Clear success intent
result = Failure("error")  # Clear failure intent

vs Exception Handling

# Traditional exception handling
try:
    result = risky_operation()
    result = transform(result)
    result = another_transform(result)
except Exception as e:
    handle_error(e)

# With Result type
result = (
    safe_call(risky_operation)
    >> safe_transform
    >> safe_another_transform
)

if result.is_failure():
    handle_error(result.error)

๐Ÿงช Real-World Examples

Database Operations

from result_type import Result, Success, Failure

def fetch_user(user_id: str) -> Result[dict, str]:
    try:
        user = database.users.find_one({"_id": user_id})
        if not user:
            return Failure("User not found")
        return Success(user)
    except Exception as e:
        return Failure(f"Database error: {e}")

def validate_user(user: dict) -> Result[dict, str]:
    if not user.get("is_active"):
        return Failure("User is inactive")
    return Success(user)

def get_user_permissions(user: dict) -> Result[list, str]:
    permissions = user.get("permissions", [])
    if not permissions:
        return Failure("User has no permissions")
    return Success(permissions)

# Chain the operations
result = (
    fetch_user("user123")
    >> validate_user
    >> get_user_permissions
)

if result.is_success():
    print(f"User permissions: {result.value}")
else:
    print(f"Failed to get permissions: {result.error}")

API Calls

import requests
from result_type import safe_call, Result, Success, Failure

def fetch_weather(city: str) -> Result[dict, str]:
    return safe_call(
        lambda: requests.get(f"http://api.weather.com/{city}").json(),
        f"Failed to fetch weather for {city}"
    )

def extract_temperature(weather_data: dict) -> Result[float, str]:
    try:
        temp = weather_data["current"]["temperature"]
        return Success(float(temp))
    except (KeyError, ValueError, TypeError) as e:
        return Failure(f"Invalid weather data: {e}")

def celsius_to_fahrenheit(celsius: float) -> Result[float, str]:
    return Success(celsius * 9/5 + 32)

# Chain API call and transformations
result = (
    fetch_weather("London")
    >> extract_temperature
    >> celsius_to_fahrenheit
)

if result.is_success():
    print(f"Temperature in Fahrenheit: {result.value}")
else:
    print(f"Error: {result.error}")

File Operations

from pathlib import Path
from result_type import safe_call, Result

def read_config_file(path: str) -> Result[dict, str]:
    def _read_and_parse():
        content = Path(path).read_text()
        return json.loads(content)
    
    return safe_call(_read_and_parse, f"Failed to read config from {path}")

def validate_config(config: dict) -> Result[dict, str]:
    required_fields = ["api_key", "database_url", "port"]
    missing = [field for field in required_fields if field not in config]
    
    if missing:
        return Failure(f"Missing required fields: {missing}")
    return Success(config)

def start_application(config: dict) -> Result[str, str]:
    # Application startup logic here
    return Success(f"Application started on port {config['port']}")

# Chain configuration loading and validation
result = (
    read_config_file("config.json")
    >> validate_config
    >> start_application
)

if result.is_success():
    print(result.value)  # "Application started on port 8080"
else:
    print(f"Startup failed: {result.error}")

๐Ÿงช Testing

# Install development dependencies
pip install python-result-type[dev]

# Run tests
pytest

# Run tests with coverage
pytest --cov=result_type --cov-report=html

# Run type checking
mypy result_type

# Format code
black result_type tests

๐Ÿ“„ Type Safety

This library is fully typed and compatible with mypy:

from result_type import Result

def typed_operation(x: int) -> Result[str, str]:
    if x < 0:
        return Failure("Negative numbers not allowed")
    return Success(str(x))

# mypy will catch type errors
result: Result[str, str] = typed_operation(42)

๐Ÿค Contributing

Contributions are welcome! Please read our Contributing Guide for details.

  • Fork the repository
  • Create a feature branch
  • Add tests for new functionality
  • Ensure all tests pass
  • Submit a pull request

๐Ÿ“œ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

๐Ÿ“ˆ Changelog

1.2.1

  • Fixed: Mypy warning "Result[T, E]" has no attribute "error" when accessing result.error
  • Fixed: Mypy warning "Result[T, E]" has no attribute "value" when accessing result.value
  • Enhanced: Added value and error properties to the abstract Result class for better type checking
  • Improved: Better mypy compatibility and type safety throughout the codebase
  • Maintained: Full backward compatibility - no breaking changes to existing code

1.2.0

  • New: Rust-like aliases Ok and Err for Success and Failure
  • New: Helper functions ok() and err() with Rust-style naming
  • Enhanced: Full compatibility between Rust aliases and original naming
  • Improved: Better developer experience for Rust developers
  • Added: Comprehensive tests and examples for Rust-style usage

1.1.0

  • New: Full async/await support with AsyncResult wrapper
  • New: async_safe_call and async_safe_call_decorator for async exception handling
  • New: Async chaining operations with .then_async() and .then_sync()
  • New: gather_results() for concurrent async operations
  • New: from_awaitable() to convert regular awaitables to AsyncResult
  • Improved: Enhanced type annotations for better IDE support
  • Enhanced: Better error messages and stack traces

1.0.0

  • Initial release
  • Core Result, Success, and Failure types
  • Chaining with .then() and >> operator
  • Helper functions and decorators
  • Comprehensive test suite
  • Full type annotations

Keywords

async

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts