πŸš€ Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more β†’

python-utilities-tfc

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

python-utilities-tfc

Utility functions to work with Terraform Cloud and manage Terraform state.

1.9.0
Maintainers
1

tf_utils.py

A Python utility module for advanced management and automation of Terraform Cloud workspaces and state files.

Features

  • State File Filtering:
    Clean and filter Terraform state files by resource/module prefixes.

  • Terraform Cloud API Automation:

    • Download/upload state files.
    • Lock/unlock workspaces.
    • Trigger, monitor, and manage runs (cancel, discard, apply).
    • Manage workspace variables.
    • Retrieve run outputs and plan summaries.
  • Logging:
    Consistent, timestamped logging for all operations.

  • SSL Verification: SSL verification is skipped if there is any certificate errors.

Usage

1. Setup

Install dependencies:

pip3 install requests
pip3 install python-utilities-tfc

Import the module in your Python script:

from python_utilities_tfc import tf_utils
export TERRAFORM_CLOUD_TOKEN="your-token"
export TERRAFORM_ORG_NAME="your-org-name"

2. Example Operations

Projects Details


import os
import logging

from tf_utils import (
    setup_logging,
    get_all_projects,
    get_project_by_id,
    log_workspace_project_mapping,
    get_workspaces_by_project
)

def main():
    setup_logging()

    projects = get_all_projects()
    if not projects:
        logging.error("No projects found.")
        return

    for project in projects:
        project_id = project.get("id")
        project_name = project.get("attributes", {}).get("name", "N/A")
        workspaces = get_workspaces_by_project(project_id)

        if not workspaces:
            logging.info(f"No workspaces found for project '{project_name}' ({project_id})")
            continue

        log_workspace_project_mapping(workspaces)

if __name__ == "__main__":
    main()

Auto-Apply-Workspace

import os
import logging

from tf_utils import (
    setup_logging,
    trigger_run,
    monitor_run,
    get_plan_summary,
    apply_run,
    get_workspace_id
)

def main():
    setup_logging()

    workspace_name = os.getenv("TARGET_WORKSPACE_NAME", "Virtual-Machines-Management")

    # Read safe prefixes from environment or fallback to "null_resource"
    safe_prefixes = os.getenv("SAFE_PREFIXES", "null_resource").split(",")

    try:
        # Step 1: Get Workspace ID
        workspace_id = get_workspace_id(workspace_name)

        # Step 2: Trigger Plan-only Run
        logging.info(f"πŸš€ Triggering a plan-only run on workspace: {workspace_name}")
        run_id = trigger_run(workspace_id, auto_apply=False)

        if not run_id:
            logging.error("❌ Failed to trigger run. No run ID returned.")
            return

        # Step 3: Monitor the Plan
        logging.info(f"πŸ”Ž Monitoring plan run {run_id}...")
        monitor_run(run_id)

        # Step 4: Summarize the Plan
        plan_result = get_plan_summary(run_id)

        if not plan_result:
            logging.warning("⚠️ No plan summary available. Cannot decide to auto-apply.")
            return

        summary = plan_result.get("summary", {})
        resource_changes = plan_result.get("resource_changes", [])

        adds = summary.get("add", 0)
        changes = summary.get("change", 0)
        destroys = summary.get("destroy", 0)
        has_changes = summary.get("has-changes", True)

        # Step 5: Log resource changes
        if resource_changes:
            logging.info("πŸ› οΈ The following resources will be created/updated/deleted:")
            for res in resource_changes:
                logging.info(f"- {res['address']} ({', '.join(res['actions'])})")
        else:
            logging.info("βœ… No actionable resource changes (only 'no-op').")

        # Step 6: Evaluate changes
        unsafe_changes = []
        for res in resource_changes:
            actions = res.get("actions", res.get("change", {}).get("actions", []))
            address = res["address"]

            for action in actions:
                if action == "create":
                    continue  # always allowed
                elif action in ["delete", "update"]:
                    if not any(address.startswith(prefix) for prefix in safe_prefixes):
                        unsafe_changes.append({
                            "address": address,
                            "actions": actions
                        })
                else:
                    # Any unknown action -> treat as unsafe
                    unsafe_changes.append({
                        "address": address,
                        "actions": actions
                    })

        # Step 7: Auto-Apply if Safe
        logging.info(f"πŸ›  Plan Summary: {adds} to add, {changes} to change, {destroys} to destroy.")

        if has_changes:
            if not unsafe_changes:
                logging.info("βœ… Only safe changes detected. Proceeding to auto-apply...")
                apply_run(run_id)

                # Step 8: Monitor the Apply
                logging.info(f"πŸ”Ž Monitoring apply for run {run_id}...")
                monitor_run(run_id)
                logging.info("βœ… Apply completed successfully.")
            else:
                logging.warning("⚠️ Unsafe resource changes detected. Manual review required:")
                for unsafe in unsafe_changes:
                    logging.warning(f"- {unsafe['address']} ({', '.join(unsafe['actions'])})")
                logging.warning("🚫 Skipping auto-apply due to unsafe changes.")
        else:
            logging.info("βœ… No changes detected. No need to apply.")

    except Exception as e:
        logging.error(f"❌ Error occurred: {e}")

if __name__ == "__main__":
    main()

Clean a State File

tf_utils.clean_state_file_by_prefixes(
    input_path="input.tfstate",
    output_path="cleaned.tfstate",
    keep_prefixes=["module1"],
    remove_prefixes=["module2"]
)

Download Workspace State

tf_utils.download_workspace_state(
    workspace_name="my-workspace",
)

Trigger and Monitor a Run

run_id = tf_utils.trigger_run(
    workspace_id="ws-xxxx",
    auto_apply=True
)
tf_utils.monitor_run(
    run_id=run_id
)

Get Run Outputs

outputs = tf_utils.get_run_outputs(
    run_id="run-xxxx"
)
print(outputs)

Get Workspace Runs

import os
import logging

from tf_utils import (
    setup_logging,
    get_workspace_id,
    get_workspace_runs
)

def main():
    setup_logging()

    workspace_name = os.getenv("TARGET_WORKSPACE_NAME", "Virtual-Machines-Management")

    try:
        workspace_id = get_workspace_id(workspace_name)
        if not workspace_id:
            logging.error(f"Workspace '{workspace_name}' not found.")
            return
        logging.info(f"Workspace ID for '{workspace_name}': {workspace_id}")
        runs = get_workspace_runs(workspace_id)
        if not runs:
            logging.info(f"No runs found for workspace '{workspace_name}' ({workspace_id})")
            return
        logging.info(f"Total Runs: {len(runs)}")

    except Exception as e:
        logging.error(f"An error occurred: {e}")

if __name__ == "__main__":
    main()

Functions Overview

  • setup_logging(): Configure logging.
  • clean_state_file_by_prefixes(): Filter resources in a state file.
  • download_workspace_state(): Download the latest state from Terraform Cloud.
  • push_state_to_terraform_cloud(): Upload a state file to Terraform Cloud.
  • lock_workspace(), unlock_workspace(): Lock/unlock a workspace.
  • trigger_run(), monitor_run(), cancel_run(), discard_run(), apply_run(): Manage runs.
  • get_run_outputs(), get_plan_summary(): Retrieve outputs and plan details.
  • get_variable_id(), update_variable(): Manage workspace variables.

Requirements

  • Python 3.11+
  • requests library

Notes

  • All API operations require a valid Terraform Cloud API token.
  • Use caution when discarding or canceling runs, as this may affect your infrastructure state.

License

MIT License

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts