You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

pyutilkit-sarvs

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pyutilkit-sarvs

A multi-purpose Python utility toolkit

0.1.0
Source
pipPyPI
Maintainers
1

PyUtilKit

A multi-purpose Python utility package that provides ready-to-use, frequently-needed helper functions for everyday coding tasks — saving time, reducing boilerplate, and improving code readability.

🚀 Installation

You can install PyUtilKit using pip:

pip install pyutilkit-sarvs

🧩 Core Modules

PyUtilKit is organized into several modules, each focusing on specific utility functions:

1. string_utils

String manipulation and validation utilities.

from pyutilkit.string_utils import to_snake_case, remove_punctuation, is_palindrome

# Case conversion
to_snake_case("HelloWorld")  # Output: "hello_world"
to_camel_case("hello_world")  # Output: "helloWorld"
to_pascal_case("hello-world")  # Output: "HelloWorld"

# String manipulation
remove_punctuation("Hello, world!")  # Output: "Hello world"
remove_digits("Hello123World")  # Output: "HelloWorld"
remove_whitespace("Hello   world", keep_single_spaces=True)  # Output: "Hello world"
truncate("Hello world", 8)  # Output: "Hello..."
pad_string("Hello", 10, pad_char="-", align="center")  # Output: "--Hello---"

# String validation
is_palindrome("racecar")  # Output: True
is_anagram("listen", "silent")  # Output: True

2. file_utils

File and directory management utilities.

from pyutilkit.file_utils import read_json, write_csv, get_file_size

# File I/O
data = read_json("data.json")
write_csv("output.csv", data, delimiter=",")
content = read_text("file.txt", encoding="utf-8")
write_text("output.txt", "Hello, world!", append=True)

# File metadata
size = get_file_size("large_file.txt", unit="MB")  # Get size in megabytes
last_modified = get_last_modified_time("file.txt", as_datetime=True)
extension = get_file_extension("document.pdf", with_dot=False)  # Output: "pdf"

# File management
create_file("new_file.txt", "Initial content")
create_directory("new_directory", exist_ok=True)
rename_file("old_name.txt", "new_name.txt", overwrite=False)
delete_file("temp.txt", missing_ok=True)
merge_csv_files(["part1.csv", "part2.csv"], "merged.csv")
merge_json_files(["config1.json", "config2.json"], "merged.json", merge_mode="merge_objects")

3. math_utils

Mathematical utilities and statistics.

from pyutilkit.math_utils import safe_divide, mean, is_prime

# Arithmetic
safe_divide(10, 0, default=0)  # Output: 0
percent_change(100, 150)  # Output: 50.0
normalized = normalize([1, 2, 3, 4, 5])  # Output: [0.0, 0.25, 0.5, 0.75, 1.0]
z_scores = z_score([2, 4, 6])  # Output: [-1.0, 0.0, 1.0]

# Statistics
mean([1, 2, 3, 4, 5])  # Output: 3.0
median([1, 3, 5, 7, 9])  # Output: 5
mode([1, 2, 2, 3, 3, 3, 4])  # Output: 3
std_dev = standard_deviation([1, 2, 3, 4, 5])  # Population standard deviation

# Number theory
is_prime(17)  # Output: True
factorial(5)  # Output: 120
gcd(8, 12)  # Output: 4
lcm(4, 6)  # Output: 12

4. list_utils

List manipulation and analysis utilities.

from pyutilkit.list_utils import flatten, chunk, get_frequency

# List manipulation
flatten([1, [2, 3], [4, [5, 6]]])  # Output: [1, 2, 3, 4, 5, 6]
chunked = chunk([1, 2, 3, 4, 5, 6, 7], 3)  # Output: [[1, 2, 3], [4, 5, 6], [7]]
unique = remove_duplicates([1, 2, 2, 3, 1, 4])  # Output: [1, 2, 3, 4]

# List analysis
freq = get_frequency([1, 2, 2, 3, 1, 3, 3, 4])  # Output: {1: 2, 2: 2, 3: 3, 4: 1}
most_common = most_frequent([1, 2, 2, 3, 1, 3, 3, 4], n=2)  # Output: [(3, 3), (1, 2)]
least_common = least_frequent([1, 2, 2, 3, 1, 3, 3, 4], n=1)  # Output: [(4, 1)]

# List transformation
str_list = to_string_list([1, 2.5, True, None])  # Output: ['1', '2.5', 'True', 'None']
int_list = to_int_list(['1', '2', '3'])  # Output: [1, 2, 3]
float_list = to_float_list(['1', '2.5', '3'])  # Output: [1.0, 2.5, 3.0]

📖 Full Documentation

For complete documentation of all functions and examples, visit https://github.com/Sarvesh-Kannan/PyUtilKit.

🧪 Testing

PyUtilKit includes a comprehensive test suite. To run the tests:

# Install pytest if you don't have it
pip install pytest

# Run tests
pytest -v

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  • Fork the repository
  • Create your feature branch (git checkout -b feature/AmazingFeature)
  • Commit your changes (git commit -m 'Add some AmazingFeature')
  • Push to the branch (git push origin feature/AmazingFeature)
  • Open a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

📬 Contact

Sarvesh Kannan - your.email@example.com

Project Link: https://github.com/Sarvesh-Kannan/PyUtilKit

Keywords

utility

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts