๐Ÿš€ Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more โ†’
Socket
Book a DemoInstallSign in
Socket

qubots

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

qubots

A collaborative optimization framework for creating optimization tools.

1.1.6
PyPI
Maintainers
1

Qubots: Collaborative Optimization Framework

PyPI version Build Status License GitHub issues GitHub forks

Qubots is a Python optimization framework that enables developers to build, share, and deploy optimization solutions. With its innovative AutoProblem and AutoOptimizer components, qubots transforms complex optimization challenges into modular, reusable components that integrate seamlessly with the Rastion platform for collaborative development and deployment.

๐ŸŽฏ Framework Overview

Qubots is designed for environments where optimization problems need to be:

  • Modular and Reusable: Problems and optimizers are independent components that can be mixed and matched
  • Collaborative: Teams can share and build upon each other's optimization components
  • Production-Ready: Robust error handling, logging, and monitoring capabilities

The framework centers around six core components that work together to provide a comprehensive optimization ecosystem:

๐Ÿ”ง Core Components

  • AutoProblem & AutoOptimizer: Automatically load and instantiate optimization problems and algorithms from repositories with dynamic parameter customization
  • Autoloading Functions: Dynamic discovery and execution of solvers with intelligent caching and dependency management
  • Benchmark System: Standardized testing and performance evaluation across optimization problems with statistical analysis
  • Cloud Execution: Scalable optimization runs with containerized environments and resource management
  • Rastion Integration: Seamless playground interface for interactive optimization development and collaboration
  • Leaderboard System: Performance tracking and comparison across solvers and problems with standardized benchmarks

๐Ÿš€ Key Features

  • ๐Ÿ”ง Auto-Loading Architecture: Seamlessly load problems and optimizers from repositories with AutoProblem and AutoOptimizer
  • ๐ŸŒ Repository Integration: Direct integration with Git repositories for version-controlled optimization components
  • ๐Ÿ“Š Comprehensive Benchmarking: Built-in performance testing, statistical analysis, and standardized benchmark suites
  • โ˜๏ธ Cloud Execution: Scalable optimization runs with containerized environments and resource management
  • ๐ŸŽฎ Rastion Playground: Interactive development environment with real-time optimization testing
  • ๐Ÿ† Leaderboard System: Performance tracking and comparison across solvers with standardized benchmarks
  • โšก High Performance: Integration with industry-standard optimization libraries (OR-Tools, HiGHS, CasADi, CPLEX, Gurobi)
  • ๐ŸŽฏ HiGHS Integration: Built-in support for HiGHS-based solvers for optimization problems like TSP
  • ๐Ÿ“ˆ Real-time Monitoring: Progress tracking, logging callbacks, and optimization result visualization
  • ๐Ÿ› ๏ธ Utility Tools: Comprehensive scripts for repository management and optimization testing

๐Ÿ“ฆ Installation

Basic Installation

Install qubots from PyPI:

pip install qubots

Domain-Specific Dependencies

For domain-specific optimizations, install optional dependencies:

# For routing and scheduling 
pip install qubots[routing]

# For continuous optimization 
pip install qubots[continuous]

# For finance optimization 
pip install qubots[finance]

# For energy optimization 
pip install qubots[energy]

# For all features
pip install qubots[all]

Development Installation

For development and testing:

# Clone the repository
git clone https://github.com/Rastion/qubots.git
cd qubots

# Install in development mode
pip install -e .[dev]

๐Ÿ—๏ธ Architecture

The qubots framework is built around a modular architecture with the following core components:

Core Components

  • AutoProblem & AutoOptimizer: Dynamic loading system for optimization components

    • Handles Git repository cloning and intelligent caching
    • Validates component structure and metadata
    • Instantiates classes with configurable parameters and dependency management
  • Autoloading Functions: Intelligent discovery and execution system

    • Automatic solver discovery from repositories
    • Parameter customization and validation
    • Dependency resolution and environment management
  • Benchmark System: Comprehensive testing and evaluation framework

    • Standardized benchmark suites for fair comparison
    • Statistical analysis and performance metrics
    • Automated report generation and visualization
  • Cloud Execution: Scalable optimization infrastructure

    • Containerized execution environments
    • Resource management and scaling
    • Integration with Rastion platform services
  • Rastion Integration: Seamless platform connectivity

    • Interactive playground interface
    • Real-time optimization testing and development
    • Collaborative features and sharing capabilities
  • Leaderboard System: Performance tracking and comparison

    • Standardized benchmarks for fair evaluation
    • Performance metrics and ranking algorithms
    • Community-driven solver comparison

Repository Structure

Each qubots repository follows a standardized structure:

repository/
โ”œโ”€โ”€ qubot.py          # Main implementation file
โ”œโ”€โ”€ config.json       # Configuration and metadata
โ”œโ”€โ”€ requirements.txt  # Python dependencies (optional)
โ””โ”€โ”€ README.md        # Documentation (optional)

๐Ÿš€ Quick Start

Loading and Running Optimizations

Here's how to load problems and optimizers from repositories and run optimizations:

from qubots import AutoProblem, AutoOptimizer

# Load a problem from a repository
problem = AutoProblem.from_repo("ileo/demo-maxcut")

# Load an optimizer from a repository
optimizer = AutoOptimizer.from_repo("ileo/demo-ortools-maxcut-optimizer")

# Run optimization
result = optimizer.optimize(problem)

print(f"Best Solution: {result.best_solution}")
print(f"Best Value: {result.best_value}")
print(f"Runtime: {result.runtime_seconds:.3f} seconds")
print(f"Iterations: {result.iterations}")

Advanced Configuration

You can override parameters when loading problems and optimizers:

from qubots import AutoProblem, AutoOptimizer

# Load problem with custom parameters
problem = AutoProblem.from_repo("ileo/demo-maxcut", override_params={
    "n_vertices": 20,
    "graph_type": "random",
    "density": 0.3
})

# Load optimizer with custom parameters
optimizer = AutoOptimizer.from_repo("ileo/demo-ortools-maxcut-optimizer", override_params={
    "time_limit": 60.0,
    "num_search_workers": 4,
    "log_search_progress": True
})

# Run optimization with callbacks
def progress_callback(iteration, best_value, current_value):
    print(f"Iteration {iteration}: Best={best_value}, Current={current_value}")

def log_callback(level, message, source):
    print(f"[{level.upper()}] {source}: {message}")

result = optimizer.optimize(
    problem,
    progress_callback=progress_callback,
    log_callback=log_callback
)

๐ŸŒ Rastion Platform Integration

Qubots integrates with the Rastion platform for collaborative optimization development:

Repository-Based Loading

The framework loads optimization components directly from Git repositories:

from qubots import AutoProblem, AutoOptimizer

# Load from public repositories
problem = AutoProblem.from_repo("username/problem-repo")
optimizer = AutoOptimizer.from_repo("username/optimizer-repo")

# Load from specific branches or revisions
problem = AutoProblem.from_repo("username/problem-repo", revision="v1.2.0")
optimizer = AutoOptimizer.from_repo("username/optimizer-repo", revision="development")

Caching and Performance

The framework automatically caches repositories for improved performance:

# Repositories are cached in ~/.cache/rastion_hub by default
# Subsequent loads are much faster

# Custom cache directory
problem = AutoProblem.from_repo(
    "username/problem-repo",
    cache_dir="./my_cache"
)

๐Ÿ“ Examples and Demonstrations

The qubots framework includes a comprehensive set of examples that demonstrate the core functionality and showcase different optimization problems and solvers. These examples are available in the examples/ directory and have been uploaded to the Rastion platform for easy access and testing.

Available Examples

  • MaxCut Problem (maxcut_problem/): Graph partitioning optimization with configurable graph types
  • OR-Tools MaxCut Optimizer (ortools_maxcut_optimizer/): Integer programming solver using Google OR-Tools
  • TSP Problem (tsp/): Traveling Salesman Problem with TSPLIB format support
  • HiGHS TSP Solver (highs_tsp_solver/): Linear programming solver using HiGHS for TSP
  • Vehicle Routing Problem (vehicle_routing_problem/): Multi-vehicle routing with capacity constraints
  • Genetic VRP Optimizer (genetic_vrp_optimizer/): Evolutionary algorithm for VRP optimization
  • TSP with Time Windows (tsp_time_windows/): TSP variant with delivery time constraints
  • TSP with Capacity Constraints (tsp_capacity_constraints/): TSP with vehicle capacity limitations

Running Examples Locally

All examples can be tested locally using the autoloading functions. See the Examples README for detailed instructions on:

  • Prerequisites and setup requirements
  • Step-by-step execution instructions
  • How examples were uploaded to the Rastion platform
  • Local testing and validation procedures

Example Usage

from qubots import AutoProblem, AutoOptimizer

# Load any example from the local examples directory
problem = AutoProblem.from_repo("examples/maxcut_problem")
optimizer = AutoOptimizer.from_repo("examples/ortools_maxcut_optimizer")

# Run optimization
result = optimizer.optimize(problem)
print(f"Best solution: {result.best_value}")

๐Ÿ› ๏ธ Utility Scripts

Qubots includes two powerful utility scripts for repository management and testing:

upload_repo_to_rastion.py

This script uploads qubots repositories to the Rastion platform for sharing and collaboration.

Purpose

  • Upload optimization problems and algorithms to the Rastion platform
  • Validate repository structure and configuration
  • Handle authentication and error reporting
  • Support for both public and private repositories

Usage

# Basic upload with auto-detected metadata
python examples/upload_repo_to_rastion.py ./my_optimizer --token YOUR_RASTION_TOKEN

# Upload with custom name and description
python examples/upload_repo_to_rastion.py ./my_problem \
    --name "custom_vrp_solver" \
    --description "Advanced VRP solver with time windows"
    --token YOUR_RASTION_TOKEN

# Upload as private repository with overwrite
python examples/upload_repo_to_rastion.py ./my_optimizer \
    --private --overwrite --token YOUR_RASTION_TOKEN

# Upload with custom requirements
python examples/upload_repo_to_rastion.py ./my_problem \
    --requirements "qubots,numpy>=1.20.0,ortools>=9.0.0"
    --token YOUR_RASTION_TOKEN

Parameters

ParameterDescriptionRequired
repo_pathPath to the repository directoryYes
--nameRepository name (auto-detected if not provided)No
--descriptionRepository description (auto-detected if not provided)No
--privateMake repository privateNo
--overwriteOverwrite existing repositoryNo
--requirementsComma-separated Python requirementsNo
--tokenRastion authentication tokenYes*

*Token can also be set via RASTION_TOKEN environment variable

Repository Structure Requirements

Your repository must contain:

  • qubot.py: Main implementation file
  • config.json: Configuration with required fields:
    {
      "type": "problem" or "optimizer",
      "entry_point": "qubot",
      "class_name": "YourClassName",
      "metadata": {
        "name": "Your Model Name",
        "description": "Model description"
      }
    }
    

Examples

# Upload a VRP problem
python examples/upload_repo_to_rastion.py ./vrp_problem \
    --name "vrp_timewindows" \
    --description "Vehicle Routing Problem with time windows and capacity constraints"
    --token YOUR_RASTION_TOKEN

# Upload an optimizer with specific requirements
python examples/upload_repo_to_rastion.py ./genetic_optimizer \
    --requirements "qubots,numpy>=1.20.0,scipy>=1.7.0" \
    --private
    --token YOUR_RASTION_TOKEN

load_and_test_optimization.py

This script loads problems and optimizers from repositories and runs comprehensive testing to validate compatibility and performance.

Purpose

  • Load and test optimization models from repositories
  • Validate problem-optimizer compatibility
  • Run multiple optimization iterations for statistical analysis
  • Provide detailed performance metrics and error reporting

Usage

# Basic testing with single iteration
python examples/load_and_test_optimization.py user/my_problem user/my_optimizer

# Run multiple iterations for statistical analysis
python examples/load_and_test_optimization.py user/my_problem user/my_optimizer --iterations 5

# Quiet mode with minimal output
python examples/load_and_test_optimization.py user/my_problem user/my_optimizer --quiet

# With authentication for private repositories
python examples/load_and_test_optimization.py user/private_problem user/private_optimizer --token YOUR_TOKEN

Parameters

ParameterDescriptionRequired
problem_repoProblem repository name (format: [username/]repo_name)Yes
optimizer_repoOptimizer repository name (format: [username/]repo_name)Yes
--iterationsNumber of optimization iterations to run (default: 1)No
--quietMinimal output modeNo
--tokenRastion authentication tokenNo*

*Token can also be set via RASTION_TOKEN environment variable

What It Tests

  • Repository Loading: Validates that both repositories can be loaded successfully
  • Compatibility: Checks that the problem and optimizer have compatible interfaces
  • Functionality: Tests basic problem evaluation and optimizer execution
  • Performance: Measures optimization time and solution quality
  • Reliability: Runs multiple iterations to assess consistency

Output

The script provides comprehensive output including:

  • Loading status and validation results
  • Compatibility check results
  • Per-iteration optimization results
  • Statistical summary (best/worst/average performance)
  • Success rate and error analysis
  • Overall assessment and recommendations

Examples

# Test a MaxCut problem with OR-Tools optimizer
python examples/load_and_test_optimization.py ileo/demo-maxcut ileo/demo-ortools-maxcut-optimizer

# Test VRP problem with genetic algorithm (5 iterations)
python examples/load_and_test_optimization.py ileo/demo-vrp-problem ileo/demo-genetic-vrp-optimizer --iterations 5

# Test private repositories with authentication
python examples/load_and_test_optimization.py company/private_problem company/private_optimizer \
    --token YOUR_RASTION_TOKEN --iterations 3

Exit Codes

  • 0: All optimization runs completed successfully
  • 1: Some optimization runs failed (partial success)
  • 2: All optimization runs failed
  • 3: Script error (loading, compatibility, etc.)

๐Ÿ“š Usage Examples

Vehicle Routing Problem (VRP)

from qubots import AutoProblem, AutoOptimizer

# Load VRP problem with custom parameters
problem = AutoProblem.from_repo("ileo/demo-vrp-problem", override_params={
    "n_customers": 25,
    "n_vehicles": 3,
    "depot_location": (0, 0),
    "vehicle_capacity": 100
})

# Load genetic algorithm optimizer
optimizer = AutoOptimizer.from_repo("ileo/demo-genetic-vrp-optimizer", override_params={
    "population_size": 100,
    "generations": 500,
    "mutation_rate": 0.1
})

# Run optimization
result = optimizer.optimize(problem)
print(f"Total distance: {result.best_value}")
print(f"Number of routes: {len(result.best_solution)}")

Maximum Cut Problem

from qubots import AutoProblem, AutoOptimizer

# Load MaxCut problem
problem = AutoProblem.from_repo("ileo/demo-maxcut", override_params={
    "n_vertices": 15,
    "graph_type": "random",
    "density": 0.4
})

# Load OR-Tools optimizer
optimizer = AutoOptimizer.from_repo("ileo/demo-ortools-maxcut-optimizer", override_params={
    "time_limit": 30.0,
    "use_symmetry": True
})

# Run optimization with monitoring
def progress_callback(iteration, best_value, current_value):
    print(f"Iteration {iteration}: Best cut weight = {best_value}")

result = optimizer.optimize(problem, progress_callback=progress_callback)
print(f"Maximum cut weight: {result.best_value}")
print(f"Cut partition: {result.best_solution}")

๐Ÿ“Š API Reference

Core Classes

AutoProblem

The AutoProblem class provides automatic loading and instantiation of optimization problems from repositories.

class AutoProblem:
    @classmethod
    def from_repo(
        cls,
        repo_id: str,
        revision: str = "main",
        cache_dir: str = "~/.cache/rastion_hub",
        override_params: Optional[dict] = None,
        validate_metadata: bool = True
    ) -> BaseProblem

Parameters:

  • repo_id: Repository identifier in format "username/repository-name"
  • revision: Git branch or tag to load (default: "main")
  • cache_dir: Local cache directory for repositories
  • override_params: Dictionary of parameters to override default values
  • validate_metadata: Whether to validate problem metadata

AutoOptimizer

The AutoOptimizer class provides automatic loading and instantiation of optimization algorithms from repositories.

class AutoOptimizer:
    @classmethod
    def from_repo(
        cls,
        repo_id: str,
        revision: str = "main",
        cache_dir: str = "~/.cache/rastion_hub",
        override_params: Optional[dict] = None,
        validate_metadata: bool = True,
    ) -> BaseOptimizer

Parameters:

  • repo_id: Repository identifier in format "username/repository-name"
  • revision: Git branch or tag to load (default: "main")
  • cache_dir: Local cache directory for repositories
  • override_params: Dictionary of parameters to override default values
  • validate_metadata: Whether to validate optimizer metadata

BaseProblem

Abstract base class for all optimization problems.

Key Methods:

  • evaluate_solution(solution): Evaluate a candidate solution
  • get_random_solution(): Generate a random valid solution
  • validate_solution_format(solution): Validate solution format
  • get_neighbor_solution(solution, step_size): Generate neighboring solution

BaseOptimizer

Abstract base class for all optimization algorithms.

Key Methods:

  • optimize(problem, initial_solution=None, progress_callback=None, log_callback=None): Run optimization
  • _optimize_implementation(problem, initial_solution): Core optimization logic (must be implemented)
  • stop_optimization(): Stop running optimization
  • get_parameters(): Get current optimizer parameters

OptimizationResult

Data class containing optimization results.

Attributes:

  • best_solution: Best solution found
  • best_value: Best objective value
  • iterations: Number of iterations performed
  • runtime_seconds: Total optimization time
  • convergence_history: History of objective values
  • metadata: Additional result metadata

Dashboard Integration

QubotsAutoDashboard

Provides automatic dashboard generation for optimization results.

@staticmethod
def auto_optimize_with_dashboard(
    problem,
    optimizer,
    problem_name: str = "Unknown Problem",
    optimizer_name: str = "Unknown Optimizer",
    log_callback=None,
    progress_callback=None
) -> DashboardResult

Benchmarking

BenchmarkSuite

Comprehensive benchmarking and comparison tools.

class BenchmarkSuite:
    def add_optimizer(self, name: str, optimizer: BaseOptimizer)
    def run_benchmarks(self, problem: BaseProblem, num_runs: int = 10)
    def generate_report(self, results: BenchmarkResult, output_file: str)

Leaderboard Integration

Standardized Benchmarks and Performance Tracking

The qubots framework includes a comprehensive leaderboard system for tracking solver performance across standardized benchmarks:

from qubots import (
    get_standardized_problems,
    submit_to_leaderboard,
    get_problem_leaderboard,
    LeaderboardClient
)

# Get available standardized problems
problems = get_standardized_problems()
print(f"Available benchmark problems: {[p.name for p in problems]}")

# Run optimization on a standardized problem
problem = AutoProblem.from_repo("standardized/tsp-att48")
optimizer = AutoOptimizer.from_repo("user/my-tsp-solver")
result = optimizer.optimize(problem)

# Submit results to leaderboard
submission = submit_to_leaderboard(
    problem_name="tsp-att48",
    solver_name="my-tsp-solver",
    result=result,
    solver_config={"time_limit": 300, "algorithm": "genetic"}
)

# View leaderboard rankings
rankings = get_problem_leaderboard("tsp-att48")
for rank, entry in enumerate(rankings[:5], 1):
    print(f"{rank}. {entry.solver_name}: {entry.best_value} ({entry.runtime:.2f}s)")

๐Ÿงช Testing and Validation

Automated Testing

Use the provided utility script for comprehensive testing:

# Test problem-optimizer compatibility
python examples/load_and_test_optimization.py ileo/demo-maxcut ileo/demo-ortools-maxcut-optimizer --iterations 5

# Test with custom parameters
python examples/load_and_test_optimization.py user/my_problem user/my_optimizer --iterations 10 --quiet

Manual Testing

from qubots import AutoProblem, AutoOptimizer

# Load components
problem = AutoProblem.from_repo("user/test-problem")
optimizer = AutoOptimizer.from_repo("user/test-optimizer")

# Validate compatibility
try:
    # Test basic functionality
    solution = problem.get_random_solution()
    cost = problem.evaluate_solution(solution)

    # Run optimization
    result = optimizer.optimize(problem)
    print(f"Test successful: {result.best_value}")

except Exception as e:
    print(f"Test failed: {e}")

Benchmarking

Compare multiple optimizers on the same problem:

from qubots import AutoProblem, AutoOptimizer, BenchmarkSuite

# Load problem
problem = AutoProblem.from_repo("ileo/demo-maxcut")

# Create benchmark suite
suite = BenchmarkSuite()

# Add optimizers to compare
suite.add_optimizer("OR-Tools", AutoOptimizer.from_repo("ileo/demo-ortools-maxcut-optimizer"))
suite.add_optimizer("Genetic Algorithm", AutoOptimizer.from_repo("user/genetic-maxcut-optimizer"))

# Run benchmarks
results = suite.run_benchmarks(problem, num_runs=10)

# Generate report
suite.generate_report(results, "benchmark_results.html")

๐Ÿค Contributing

We welcome contributions to the qubots framework! Here's how you can contribute:

Types of Contributions

  • New Optimization Problems: Create and share new problem types
  • New Optimization Algorithms: Implement and share new optimizers
  • Bug Fixes: Report and fix issues in the framework
  • Documentation: Improve documentation and examples
  • Performance Improvements: Optimize existing components

Development Setup

# Clone the repository
git clone https://github.com/Rastion/qubots.git
cd qubots

# Install in development mode with all dependencies
pip install -e .

Creating a New Optimizer

  • Create Repository Structure:
my_optimizer/
โ”œโ”€โ”€ qubot.py          # Main implementation
โ”œโ”€โ”€ config.json       # Configuration
โ”œโ”€โ”€ requirements.txt  # Dependencies
โ””โ”€โ”€ README.md        # Documentation
  • Implement Optimizer (qubot.py):
from qubots import BaseOptimizer, OptimizationResult, OptimizerMetadata
import time

class MyOptimizer(BaseOptimizer):
    def _get_default_metadata(self):
        return OptimizerMetadata(
            name="My Custom Optimizer",
            description="A novel optimization algorithm",
            author="Your Name",
            version="1.0.0"
        )

    def _optimize_implementation(self, problem, initial_solution=None):
        start_time = time.time()
        best_solution = problem.get_random_solution()
        best_value = problem.evaluate_solution(best_solution)

        # Your optimization logic here
        for iteration in range(100):
            solution = problem.get_random_solution()
            value = problem.evaluate_solution(solution)

            if value < best_value:
                best_solution = solution
                best_value = value

        return OptimizationResult(
            best_solution=best_solution,
            best_value=best_value,
            iterations=100,
            runtime_seconds=time.time() - start_time
        )
  • Configure (config.json):
{
    "type": "optimizer",
    "entry_point": "qubot",
    "class_name": "MyOptimizer",
    "metadata": {
        "name": "My Custom Optimizer",
        "description": "A novel optimization algorithm"
    },
    "default_params": {}
}
  • Upload to Platform:
python examples/upload_repo_to_rastion.py ./my_optimizer --name "my_custom_optimizer" --token YOUR_RASTION_TOKEN

๐Ÿ“„ License

This project is licensed under the Apache License 2.0.

Qubots empowers organizations to build scalable, collaborative optimization solutions. With its architecture and seamless repository integration, teams can rapidly develop, share, and deploy optimization components that solve real-world challenges across industries.

Keywords

optimization

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts