
Security News
TC39 Advances 11 Proposals for Math Precision, Binary APIs, and More
TC39 advances 11 JavaScript proposals, with two moving to Stage 4, bringing better math, binary APIs, and more features one step closer to the ECMAScript spec.
Qwen-VL Utils contains a set of helper functions for processing and integrating visual language information with Qwen-VL Series Model.
pip install qwen-vl-utils
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
messages = [
# Image
## Local file path
[{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
## Image URL
[{"role": "user", "content": [{"type": "image", "image": "http://path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
## Base64 encoded image
[{"role": "user", "content": [{"type": "image", "image": "data:image;base64,/9j/..."}, {"type": "text", "text": "Describe this image."}]}],
## PIL.Image.Image
[{"role": "user", "content": [{"type": "image", "image": pil_image}, {"type": "text", "text": "Describe this image."}]}],
## Model dynamically adjusts image size, specify dimensions if required.
[{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg", "resized_height": 280, "resized_width": 420}, {"type": "text", "text": "Describe this image."}]}],
# Video
## Local video path
[{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4"}, {"type": "text", "text": "Describe this video."}]}],
## Local video frames
[{"role": "user", "content": [{"type": "video", "video": ["file:///path/to/extracted_frame1.jpg", "file:///path/to/extracted_frame2.jpg", "file:///path/to/extracted_frame3.jpg"],}, {"type": "text", "text": "Describe this video."},],}],
## Model dynamically adjusts video nframes, video height and width. specify args if required.
[{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4", "fps": 2.0, "resized_height": 280, "resized_width": 280}, {"type": "text", "text": "Describe this video."}]}],
]
processor = AutoProcessor.from_pretrained(model_path)
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto", device_map="auto")
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
images, videos = process_vision_info(messages)
inputs = processor(text=text, images=images, videos=videos, padding=True, return_tensors="pt")
print(inputs)
generated_ids = model.generate(**inputs)
print(generated_ids)
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
# You can set the maximum tokens for a video through the environment variable VIDEO_MAX_PIXELS
# based on the maximum tokens that the model can accept.
# export VIDEO_MAX_PIXELS = 32000 * 28 * 28 * 0.9
# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
messages = [
# Image
## Local file path
[{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
## Image URL
[{"role": "user", "content": [{"type": "image", "image": "http://path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
## Base64 encoded image
[{"role": "user", "content": [{"type": "image", "image": "data:image;base64,/9j/..."}, {"type": "text", "text": "Describe this image."}]}],
## PIL.Image.Image
[{"role": "user", "content": [{"type": "image", "image": pil_image}, {"type": "text", "text": "Describe this image."}]}],
## Model dynamically adjusts image size, specify dimensions if required.
[{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg", "resized_height": 280, "resized_width": 420}, {"type": "text", "text": "Describe this image."}]}],
# Video
## Local video path
[{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4"}, {"type": "text", "text": "Describe this video."}]}],
## Local video frames
[{"role": "user", "content": [{"type": "video", "video": ["file:///path/to/extracted_frame1.jpg", "file:///path/to/extracted_frame2.jpg", "file:///path/to/extracted_frame3.jpg"],}, {"type": "text", "text": "Describe this video."},],}],
## Model dynamically adjusts video nframes, video height and width. specify args if required.
[{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4", "fps": 2.0, "resized_height": 280, "resized_width": 280}, {"type": "text", "text": "Describe this video."}]}],
]
processor = AutoProcessor.from_pretrained(model_path)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto", device_map="auto")
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
images, videos, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
inputs = processor(text=text, images=images, videos=videos, padding=True, return_tensors="pt", **video_kwargs)
print(inputs)
generated_ids = model.generate(**inputs)
print(generated_ids)
FAQs
Qwen Vision Language Model Utils - PyTorch
We found that qwen-vl-utils demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
TC39 advances 11 JavaScript proposals, with two moving to Stage 4, bringing better math, binary APIs, and more features one step closer to the ECMAScript spec.
Research
/Security News
A flawed sandbox in @nestjs/devtools-integration lets attackers run code on your machine via CSRF, leading to full Remote Code Execution (RCE).
Product
Customize license detection with Socket’s new license overlays: gain control, reduce noise, and handle edge cases with precision.