🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more

rake-new2

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

rake-new2

A Python library that enables smooth keyword extraction from any text using the RAKE(Rapid Automatic Keyword Extraction) algorithm.

1.0.5
100

Supply Chain Security

100

Vulnerability

99

Quality

100

Maintenance

100

License

Unpopular package

Quality

This package is not very popular.

Found 1 instance in 1 package

Maintainers
1

rake_new2

rake_new2 is a Python library that enables simple and fast keyword extraction from any text. As the name implies, this library works on the RAKE(Rapid Automatic Keyword Extraction) algorithm.

It tries to determine the key phrases in a text by calculating the co-occurrences of every word in a key phrase and also its frequency in the entire text.

Demo

New in this version

  • Handles repetitive keywords/key-phrases

  • Handles consecutive punctuations.

  • Handles HTML tags in text : The user is allowed an option to choose if they want to keep HTML tags as keywords too.

Demo 2

Installation

Use the package manager pip to install rake_new2.

pip install rake_new2

Quick Start

from rake_new2 import Rake

text = "Red apples are good in taste."
text2 = "<h1> Hello world !</h1>"
rk,rk_new1,rk_new2 = Rake(),Rake(keep_html_tags=True),Rake(keep_html_tags=False)

# Case 1
# Initialize
rk.get_keywords_from_raw_text(text)
kw_s = rk.get_keywords_with_scores()  
# Returns keywords with degree scores : {(1.0, 'taste'), (1.0, 'good'), (4.0, 'red apples')}
kw = rk.get_ranked_keywords() 
# Returns keywords only : ['red apples', 'taste', 'good']
f = rk.get_word_freq()
# Returns word frequencies as a Counter object : {'red': 1, 'apples': 1, 'good': 1, 'taste': 1}
deg = rk.get_kw_degree()
# Returns word degrees as defaultdict object : {'red': 2.0, 'apples': 2.0, 'good': 1.0, 'taste': 1.0}

# Case 2 : Sample case for testing the 'keep_html_tags' parameter. Default = False
print("\nORIGINAL TEXT : {}".format(text))
# Sub Case 1 : Keeping the HTMLtags
rk_new1.get_keywords_from_raw_text(text2)
kw_s1 = rk_new1.get_keywords_with_scores()
kw1 = rk_new1.get_ranked_keywords()
print("Keeping the tags : ",kw1)

# Sub Case 2 : Eliminating the HTML tags
rk_new2.get_keywords_from_raw_text(text2)
kw_s2 = rk_new2.get_keywords_with_scores()
kw2 = rk_new2.get_ranked_keywords()
print("Eliminating the tags : ",kw2)

'''OUTPUT >>
ORIGINAL TEXT : <h1> Hello world !</h1>
Keeping the tags :  {'h1', 'hello'}
Eliminating the tags :  {'hello world'} 
'''

Debugging

You might come across a stopwords error.

It implies that you do not have the stopwords corpus downloaded from NLTK.

To download it, use the command below.

python -c "import nltk; nltk.download('stopwords')"

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

MIT

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts