🚨 Shai-Hulud Strikes Again:834 Packages Compromised.Technical Analysis
Socket
Book a DemoInstallSign in
Socket

rapyer

Package Overview
Dependencies
Maintainers
1
Versions
11
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

rapyer

Pydantic models with Redis as the backend

pipPyPI
Version
1.1.0
Maintainers
1
Rapyer Logo

Rapyer

Redis Atomic Pydantic Engine Reactor

An async Redis ORM that provides atomic operations for complex data models

Python 3.10+ License: MIT Redis codecov PyPI version Downloads Documentation

📚 Full Documentation | Installation | Examples | API Reference

What is Rapyer?

Rapyer (Redis Atomic Pydantic Engine Reactor) is a modern async Redis ORM that enables atomic operations on complex data models. Built with Pydantic v2, it provides type-safe Redis interactions while maintaining data consistency and preventing race conditions.

Key Features

🚀 Atomic Operations - Built-in atomic updates for complex Redis data structures
Async/Await - Full asyncio support for high-performance applications
🔒 Type Safety - Complete type validation using Pydantic v2
🌐 Universal Types - Native optimization for primitives, automatic serialization for complex types
🔄 Race Condition Safe - Lock context managers and pipeline operations
📦 Redis JSON - Efficient storage using Redis JSON with support for nested structures

Installation

pip install rapyer

Requirements:

  • Python 3.10+
  • Redis server with JSON module
  • Pydantic v2

Quick Start

import asyncio
from rapyer.base import AtomicRedisModel
from typing import List, Dict

class User(AtomicRedisModel):
    name: str
    age: int
    tags: List[str] = []
    metadata: Dict[str, str] = {}

async def main():
    # Create and save a user
    user = User(name="John", age=30)
    await user.save()

    # Atomic operations that prevent race conditions
    await user.tags.aappend("python")
    await user.tags.aextend(["redis", "pydantic"])
    await user.metadata.aupdate(role="developer", level="senior")

    # Load user from Redis
    loaded_user = await User.get(user.key)
    print(f"User: {loaded_user.name}, Tags: {loaded_user.tags}")

    # Atomic operations with locks for complex updates
    async with user.lock("update_profile") as locked_user:
        locked_user.age += 1
        await locked_user.tags.aappend("experienced")
        # Changes saved atomically when context exits

if __name__ == "__main__":
    asyncio.run(main())

Core Concepts

Atomic Operations

Rapyer ensures data consistency with built-in atomic operations:

# These operations are atomic and race-condition safe
await user.tags.aappend("python")           # Add to list
await user.metadata.aupdate(role="dev")     # Update dict
await user.score.set(100)                   # Set value

Lock Context Manager

For complex multi-field updates:

async with user.lock("transaction") as locked_user:
    locked_user.balance -= 50
    locked_user.transaction_count += 1
    # All changes saved atomically

Pipeline Operations

Batch multiple operations for performance:

async with user.pipeline() as pipelined_user:
    await pipelined_user.tags.aappend("redis")
    await pipelined_user.metadata.aupdate(level="senior")
    # Executed as single atomic transaction

Type Support

Rapyer supports all Python types with automatic serialization:

  • Native types (str, int, List, Dict) - Optimized Redis operations
  • Complex types (dataclass, Enum, Union) - Automatic pickle serialization
  • Nested models - Full Redis functionality preserved
from dataclasses import dataclass
from enum import Enum

@dataclass
class Config:
    debug: bool = False

class User(AtomicRedisModel):
    name: str = "default"
    scores: List[int] = []
    config: Config = Config()  # Auto-serialized
    
# All types work identically
user = User()
await user.config.set(Config(debug=True))  # Automatic serialization
await user.scores.aappend(95)               # Native Redis operation

Why Choose Rapyer?

Comparison with Other Redis ORMs

FeatureRapyerRedis OMpydantic-redisorredis
🚀 Atomic Operations✅ Built-in for all operations❌ Manual transactions only❌ Manual transactions only❌ Manual transactions only
🔒 Lock Context Manager✅ Automatic with async with model.lock()❌ Manual implementation required❌ Manual implementation required❌ Manual implementation required
⚡ Pipeline Operations✅ True atomic batching with model.pipeline()⚠️ Basic pipeline support❌ No pipeline support❌ No pipeline support
🌐 Universal Type Support✅ Native + automatic serialization for any type⚠️ HashModel vs JsonModel limitations⚠️ Limited complex types⚠️ Limited complex types
🔄 Race Condition Safe✅ Built-in prevention with Lua scripts❌ Manual implementation required❌ Manual implementation required❌ Manual implementation required
📦 Redis JSON Native✅ Optimized JSON operations✅ Via JsonModel only❌ Hash-based❌ Hash-based
⚙️ Pydantic v2 Support✅ Full compatibility✅ Recent support⚠️ Limited support⚠️ Basic support
🎯 Type Safety✅ Complete validation✅ Good validation✅ Good validation⚠️ Basic validation
⚡ Performance✅ Optimized operations✅ Good performance✅ Standard✅ Rust-optimized
🔧 Nested Model Support✅ Full Redis functionality preserved⚠️ Limited nesting✅ Advanced relationships⚠️ Basic support
🎛️ Custom Primary Keys✅ Field annotations❌ ULIDs only✅ Custom fields✅ Custom fields
🧪 Extensive Test Coverage✅ 90%+ comprehensive tests with CI⚠️ Basic testing with CI⚠️ Limited test coverage⚠️ Basic test suite

🏆 What Makes Rapyer Unique

True Atomic Operations Out of the Box

# Rapyer - Atomic by default
await user.tags.aappend("python")           # Race-condition safe
await user.metadata.aupdate(role="dev")     # Always atomic

# Others - Manual transaction management required
async with redis.pipeline() as pipe:        # Manual setup
    pipe.multi()                             # Manual transaction
    # ... manual Redis commands               # Error-prone
    await pipe.execute()

Intelligent Lock Management

# Rapyer - Automatic lock context
async with user.lock("profile_update") as locked_user:
    locked_user.balance -= 50
    locked_user.transaction_count += 1
    # All changes saved atomically on exit

# Others - Manual lock implementation
lock_key = f"lock:{user.key}"
while not await redis.set(lock_key, token, nx=True):  # Manual retry logic
    await asyncio.sleep(0.1)                           # Race conditions possible
# ... manual cleanup required

Universal Type System

# Rapyer - Any Python type works identically
class User(AtomicRedisModel):
    scores: List[int] = []              # Native Redis operations
    config: MyDataClass = MyDataClass()  # Auto-serialized
    metadata: Dict[str, Any] = {}       # Native Redis operations

# All types support the same atomic operations
await user.config.set(new_config)      # Automatic serialization
await user.scores.aappend(95)           # Native Redis LIST operations
await user.metadata.aupdate(key="val") # Native Redis JSON operations

Pipeline with True Atomicity

# Rapyer - Everything in pipeline is atomic
async with user.pipeline() as pipelined_user:
    await pipelined_user.tags.aappend("redis")
    await pipelined_user.metadata.aupdate(level="senior")
    # Single atomic transaction - either all succeed or all fail

# Others - No built-in pipeline abstraction for ORM operations

Learn More

  • 📖 Documentation - Complete guide and API reference
  • 🗺️ Roadmap - Future features and development plans

Contributing

Contributions are welcome! Please feel free to submit a Pull Request. Thanks for @Mizaro this would not have been possible without you.

License

MIT License

Keywords

redis

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts