
Security News
MCP Community Begins Work on Official MCP Metaregistry
The MCP community is launching an official registry to standardize AI tool discovery and let agents dynamically find and install MCP servers.
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png
.. image:: https://readthedocs.org/projects/ray/badge/?version=master :target: http://docs.ray.io/en/master/?badge=master
.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue :target: https://www.ray.io/join-slack
.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue :target: https://discuss.ray.io/
.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter :target: https://twitter.com/raydistributed
.. image:: https://img.shields.io/badge/Get_started_for_free-3C8AE9?logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8%2F9hAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAEKADAAQAAAABAAAAEAAAAAA0VXHyAAABKElEQVQ4Ea2TvWoCQRRGnWCVWChIIlikC9hpJdikSbGgaONbpAoY8gKBdAGfwkfwKQypLQ1sEGyMYhN1Pd%2B6A8PqwBZeOHt%2FvsvMnd3ZXBRFPQjBZ9K6OY8ZxF%2B0IYw9PW3qz8aY6lk92bZ%2BVqSI3oC9T7%2FyCVnrF1ngj93us%2B540sf5BrCDfw9b6jJ5lx%2FyjtGKBBXc3cnqx0INN4ImbI%2Bl%2BPnI8zWfFEr4chLLrWHCp9OO9j19Kbc91HX0zzzBO8EbLK2Iv4ZvNO3is3h6jb%2BCwO0iL8AaWqB7ILPTxq3kDypqvBuYuwswqo6wgYJbT8XxBPZ8KS1TepkFdC79TAHHce%2F7LbVioi3wEfTpmeKtPRGEeoldSP%2FOeoEftpP4BRbgXrYZefsAI%2BP9JU7ImyEAAAAASUVORK5CYII%3D :target: https://www.anyscale.com/ray-on-anyscale?utm_source=github&utm_medium=ray_readme&utm_campaign=get_started_badge
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute:
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg
.. https://docs.google.com/drawings/d/1Pl8aCYOsZCo61cmp57c7Sja6HhIygGCvSZLi_AuBuqo/edit
Learn more about Ray AI Libraries
_:
Data
_: Scalable Datasets for MLTrain
_: Distributed TrainingTune
_: Scalable Hyperparameter TuningRLlib
_: Scalable Reinforcement LearningServe
_: Scalable and Programmable ServingOr more about Ray Core
_ and its key abstractions:
Tasks
_: Stateless functions executed in the cluster.Actors
_: Stateful worker processes created in the cluster.Objects
_: Immutable values accessible across the cluster.Learn more about Monitoring and Debugging:
Ray Dashboard <https://docs.ray.io/en/latest/ray-core/ray-dashboard.html>
__.Ray Distributed Debugger <https://docs.ray.io/en/latest/ray-observability/ray-distributed-debugger.html>
__.Ray runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing
ecosystem of community integrations
_.
Install Ray with: pip install ray
. For nightly wheels, see the
Installation page <https://docs.ray.io/en/latest/ray-overview/installation.html>
__.
.. _Serve
: https://docs.ray.io/en/latest/serve/index.html
.. _Data
: https://docs.ray.io/en/latest/data/dataset.html
.. _Workflow
: https://docs.ray.io/en/latest/workflows/concepts.html
.. _Train
: https://docs.ray.io/en/latest/train/train.html
.. _Tune
: https://docs.ray.io/en/latest/tune/index.html
.. _RLlib
: https://docs.ray.io/en/latest/rllib/index.html
.. _ecosystem of community integrations
: https://docs.ray.io/en/latest/ray-overview/ray-libraries.html
Today's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.
Ray is a unified way to scale Python and AI applications from a laptop to a cluster.
With Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.
Documentation
_Ray Architecture whitepaper
_Exoshuffle: large-scale data shuffle in Ray
_Ownership: a distributed futures system for fine-grained tasks
_RLlib paper
_Tune paper
_Older documents:
Ray paper
_Ray HotOS paper
_Ray Architecture v1 whitepaper
_.. _Ray AI Libraries
: https://docs.ray.io/en/latest/ray-air/getting-started.html
.. _Ray Core
: https://docs.ray.io/en/latest/ray-core/walkthrough.html
.. _Tasks
: https://docs.ray.io/en/latest/ray-core/tasks.html
.. _Actors
: https://docs.ray.io/en/latest/ray-core/actors.html
.. _Objects
: https://docs.ray.io/en/latest/ray-core/objects.html
.. _Documentation
: http://docs.ray.io/en/latest/index.html
.. _Ray Architecture v1 whitepaper
: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
.. _Ray Architecture whitepaper
: https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview
.. _Exoshuffle: large-scale data shuffle in Ray
: https://arxiv.org/abs/2203.05072
.. _Ownership: a distributed futures system for fine-grained tasks
: https://www.usenix.org/system/files/nsdi21-wang.pdf
.. _Ray paper
: https://arxiv.org/abs/1712.05889
.. _Ray HotOS paper
: https://arxiv.org/abs/1703.03924
.. _RLlib paper
: https://arxiv.org/abs/1712.09381
.. _Tune paper
: https://arxiv.org/abs/1807.05118
.. list-table:: :widths: 25 50 25 25 :header-rows: 1
Discourse Forum
_GitHub Issues
_Slack
_StackOverflow
_Meetup Group
_Twitter
_.. _Discourse Forum
: https://discuss.ray.io/
.. _GitHub Issues
: https://github.com/ray-project/ray/issues
.. _StackOverflow
: https://stackoverflow.com/questions/tagged/ray
.. _Meetup Group
: https://www.meetup.com/Bay-Area-Ray-Meetup/
.. _Twitter
: https://twitter.com/raydistributed
.. _Slack
: https://www.ray.io/join-slack?utm_source=github&utm_medium=ray_readme&utm_campaign=getting_involved
FAQs
Ray provides a simple, universal API for building distributed applications.
We found that ray demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 26 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
The MCP community is launching an official registry to standardize AI tool discovery and let agents dynamically find and install MCP servers.
Research
Security News
Socket uncovers an npm Trojan stealing crypto wallets and BullX credentials via obfuscated code and Telegram exfiltration.
Research
Security News
Malicious npm packages posing as developer tools target macOS Cursor IDE users, stealing credentials and modifying files to gain persistent backdoor access.