Socket
Book a DemoInstallSign in
Socket

responses-validator

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

responses-validator

Write response validation scripts for requests using flexible YAML syntax, including: status_code, headers, text, and json()

0.3.0
pipPyPI
Maintainers
1

responses-validator

A more convenient HTTP response assertion tool, designed for the requests library (also compatible with httpx). It supports writing flexible response validation scripts using YAML syntax, including validation for status codes, headers, text content, and JSON data, inspired by GitHub Actions.

Introduction

responses-validator is a Python library for validating HTTP responses. It provides a declarative way to define complex response validation rules, supporting multiple validation modes such as wildcards, regular expressions, and JSON Schema. It is an indispensable tool for API testing, interface monitoring, and automation workflows.

The core philosophy of responses-validator is to separate validation rules from test code. In traditional testing, assertion logic is often tightly coupled with the code, making it difficult to maintain. This library abstracts validation rules into separate YAML files, implementing a "validation as data" pattern. This approach offers several benefits:

  • Separation of Concerns: Test engineers or QA can focus on writing and maintaining YAML validation files without needing to delve into the internal workings of the test framework.
  • Readability and Maintainability: YAML-formatted validation rules are easier to read and manage than Python code, especially when there are many assertions.
  • Reusability: The same set of validation rules can be easily reused across different test cases, or even different projects.

Features

  • 🚀 Easy to Use: Supports both YAML configuration and Python code.
  • 🎯 Multiple Validation Modes: Supports exact matching, wildcards, regular expressions, JSON Path, and more.
  • 📝 Detailed Error Messages: Provides clear reasons for validation failures.
  • 🔧 Highly Customizable: Supports custom validation functions.
  • 📋 Type Hinting: Full support for type annotations.
  • 🌟 Flexible Validation Rules: Each field supports both simple and detailed configuration methods.

Installation

Requirements: Python >= 3.12

pip install responses-validator

Basic Usage

YAML Mode

import requests
from responses_validator import validator
from yaml import safe_load

# Define validation rules (YAML format)
yaml_text = """
status_code: 200
headers:
  content-type: 'application/json'
json:
  id: 1
  name: "*"
text: "*success*"
"""
validate_config = safe_load(yaml_text)

# Send request and assert
resp = requests.get("https://api.example.com/users/1")
validator(resp, **validate_config) # Throws an exception if validation fails

Python Mode

import requests
from responses_validator import validator

# Send request
resp = requests.get("https://api.example.com/users/1")

# Use Python arguments directly
errors = validator(
    resp,
    status_code=200,
    headers={"content-type": "application/json*"},
    json={"id": 1, "name": "*"},
    text="*success*",
    raise_exception=False  # Don't raise an exception, return error information instead
)

if errors:
    print("Validation failed:", errors)
else:
    print("Validation successful!")

Advanced Usage

Status Code Validation

Status code validation supports a single value, wildcards, and multiple values (separated by |):

---
# Single status code
status_code: 200

---
# Wildcard matching
status_code: "2*"  # Matches all 2xx status codes. Note: quotes are required when using special characters.

---
# Multiple possible status codes
status_code: "200 | 201 | 204"

---
# Complex matching
status_code: "20* | 30*"  # Matches 2xx or 3xx status codes

Text Validation

Text supports both simple strings and detailed configurations (for detailed configuration, refer to TextFieldDict):

---
# Simple string matching (uses glob mode by default)
text: "Welcome*" # Note: quotes are required when using special characters.

---
# Number
text: 12345 # Numbers are automatically converted to strings

---
# Detailed configuration: you can define value, mode, and msg (failure message)
text: # Exactly the same as the first validation
  value: "Welcome *"
  mode: glob  # Use glob for wildcard matching

---
# Exact matching
text:
  value: "Welcome home"
  mode: same  # same mode for exact matching
  msg: Response content must be exactly 'Welcome home'!

---
# Regular expression matching
text:
  value: "^Welcome (?:to )?[a-zA-Z]+$"
  mode: re # re mode for regular expression matching
  msg: Response content must start with 'Welcome' or 'Welcome to'

---
# Custom function validation
text:
  value: "lambda text: len(text) > 100"
  mode: function
  msg: Response text length must be greater than 100 characters

Headers Validation

Headers are a dictionary (key-value pairs). Each key is a request header, and its value is a mini Text validation.

---
# Simple key-value matching
headers:
  content-type: "application/json"
  server: "nginx*"  # Supports wildcards

---
# Detailed configuration
headers:
  content-type:
    value: "application/json"
    mode: same  # Exact match
    msg: Response type must be JSON
  
  server:
    value: "nginx.*"
    mode: re  # Regular expression match
    msg: Server must be nginx
  
  x-rate-limit-remaining:
    value: "lambda x: int(x) > 0"
    mode: function  # Custom function validation
    msg: API call limit has been reached

---
# Mixed usage
headers:
  content-type: "application/json"  # Simple mode
  server:  # Detailed mode
    value: "nginx*"
    mode: glob
    msg: Server must be nginx

Cookies Validation

Cookies validation is identical to Headers validation:

---
# Simple key-value matching
cookies:
  session_id: "*"
  user_token: "abc*"

---
# Detailed configuration
cookies:
  session_id:
    value: "*"
    mode: glob
    msg: Session ID cannot be empty
  
  user_token:
    value: "[a-f0-9]{32}"
    mode: re
    msg: User token format is incorrect
  
  expires:
    value: "lambda x: int(x) > 1234567890"
    mode: function
    msg: Cookie must not be expired

JSON Validation

JSON validation is the most powerful feature, supporting multiple validation modes (for detailed configuration, refer to JSONFieldDict):

---
# Simple partial matching (glob mode by default)
json:
  id: 1
  name: John
  # The actual response can contain other fields

---
# Partial array matching
json:
  users:
    - id: 1
      name: John
    # The actual array can contain more elements

---
# Detailed configuration - Exact matching
json:
  value:
    id: 1
    name: John
    email: "john@example.com"
  mode: same  # Must match exactly
  msg: JSON structure and content must be identical

---
# JSON Schema validation
json:
  value: # No need to provide a schema, just an example that conforms to the schema.
    id: 99999
    name: string
    email: eamil@example.com
  mode: schema
  msg: JSON must conform to the same schema as the value

---
# JSONPath validation
json:
  value:
    "$.users[*].name": ["John", "Jane"]
    "$.total_count": 2 # Will be automatically converted to a list
    "$.data.status": active # Will be automatically converted to a list
  mode: jsonpath
  msg: JSONPath query result does not match

---
# KeyPath validation
json:
  value:
    "users[0].name": John  # This field uses the text `globe` mode
    "data.status":         # This field uses the text `function` mode
      value: "lambda data: data =='active' "
      model: function
  mode: keypath
  msg: KeyPath verification failed
  
---
# Custom function validation
json:
  value: "mymodule.validators.validate_user_response"
  mode: function
  msg: User response validation failed

---
# Lambda function validation
json:
  value: "lambda data: data.get('id', 0) > 0"
  mode: function
  msg: User ID must be greater than 0

Response Validation

For custom complex validation needs, you can implement a custom function to validate the entire Response object.

The function should accept one positional argument (resp) and return a boolean value (True: validation passed; False: validation failed):

# my_funcs.py
def ret_true(resp):
    print(f"call ret_true: {resp=}")
    return True

def ret_false(resp):
    print(f"call ret_false: {resp=}")
    return False
---
# Import a function from a file
function: 'my_funcs.ret_true'

---
# Status code validation
function: "lambda resp: resp.status_code == 200"

---
# Status code range validation
function: "lambda resp: 200 <= resp.status_code < 300"

---
# JSON data validation
function: "lambda resp: resp.json().get('status') == 'success'"

---
# Array length validation
function: "lambda resp: len(resp.json().get('data', [])) > 0"

---
# Text content validation
function: "lambda resp: 'error' not in resp.text.lower()"

---
# Composite condition validation
function: "lambda resp: resp.status_code == 200 and resp.json().get('total', 0) > 10"

Detailed Configuration Structure

TextFieldDict

Used for validating text-based content like text, headers, and cookies:

from typing import TypedDict, NotRequired, Required
from responses_validator.fields import TextFieldMode

class TextFieldDict(TypedDict):
    name: NotRequired[str]          # Field name (set automatically, usually not specified manually)
    value: Required[str]            # Validation value (required)
    mode: NotRequired[TextFieldMode]  # Validation mode (optional, defaults to glob)
    msg: NotRequired[str]           # Custom error message (optional)

About name:

  • When validating text, the name field is automatically populated with text.
  • When validating headers and cookies, the name field is automatically populated with the dictionary key (e.g., content-type).

Supported Validation Modes (TextFieldMode):

  • same: Exact match; the value must be perfectly equal.
  • glob: Wildcard matching; supports * and ? (default mode).
  • re: Regular expression matching.
  • function: Custom function validation. The value should be a string in one of two formats:
    • Module import path: e.g., "mymodule.validators.validate_session"
    • Lambda expression: e.g., "lambda x: int(x) > 0"

Example:

# Examples of various TextFieldDict usages
headers:
  # glob mode (default)
  content-type: "application/*"
  
  # same mode
  server:
    value: "nginx/1.21.5"
    mode: same
    msg: Server version must match exactly
  
  # re mode
  x-request-id:
    value: "[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
    mode: re
    msg: Request ID must be a standard UUID format
  
  # function mode
  content-length:
    value: "lambda x: int(x) > 0"
    mode: function
    msg: Content length must be greater than 0

text:
  value: "Welcome, .*!"
  mode: re
  msg: Welcome message format is incorrect

cookies:
  session:
    value: "mymodule.validators.validate_session"
    mode: function
    msg: Session validation failed

JSONFieldDict

The detailed assertion dictionary structure for json:

from typing import TypedDict, NotRequired, Required, Union
from responses_validator.fields import JSONFieldMode

class JSONFieldDict(TypedDict):
    name: NotRequired[str]              # Field name (set automatically)
    value: Required[Union[dict, str]]   # Validation value, can be a dict or string (required)
    mode: NotRequired[JSONFieldMode]    # Validation mode (optional, defaults to `glob`)
    msg: NotRequired[str]               # Custom error message (optional)

About name:

  • When validating json, the name field is automatically populated with json.

Supported Validation Modes (JSONFieldMode):

  • glob: Partial matching, recursively matches a subset of the JSON structure (default mode).
  • same: Exact matching; the JSON must be completely identical.
  • "schema": JSON Schema validation; validates that the actual JSON and expected JSON have the same schema.
  • "jsonpath": JSONPath expression validation; uses path queries.
  • "keypath": Simple selection, advanced verification; Perform 'TextFieldDict' multimodal validation on each field.
  • function: Custom function validation. The value should be a string in one of two formats:
    • Module import path: e.g., "mymodule.validators.validate_user"
    • Lambda expression: e.g., "lambda data: data['id'] > 0"

Detailed Examples:

---
json:
  # glob mode - Partial matching (default)
  value:
    user:
      id: 1
      name: John
    # The actual JSON can have more fields, as long as it includes these
  mode: glob
  msg: User information does not match

---
json:
  # same mode - Exact matching
  mode: same
  msg: Response structure and content must match exactly
  value:
    status: success
    data: [{"user":{"id":1, "name":"aaa"}}, {"user":{"id":2, "name":"bb"}}]
    count: 2

---
json:
  # schema mode - JSON Schema validation
  value:
    status: string
    data: []
    count: 0
  mode: schema
  msg: Response structure must match exactly
---
json:
  # jsonpath mode - Path query validation
  value:
    "$.users[*].id": [1, 2, 3]       # Key is the jsonpath, value is the expected result (list)
    "$.users[0].name": ["John"]          
    "$.total": 3                     # If the value is not a list, it's automatically converted
    "$.status": success              
  mode: jsonpath
  msg: JSONPath query result does not meet expectations

---
json:
  # function mode - Module function
  value: "validators.complex_json_validator"
  mode: function
  msg: Complex JSON validation failed

---
json:
  # function mode - Lambda expression
  value: "lambda data: len(data.get('users', [])) > 0 and all('email' in user for user in data['users'])"
  mode: function
  msg: All users must have an email field

Complete Example

# test_api.yaml
# A complete validation configuration example

status_code: "200 | 201"

headers:
  content-type: "application/json*"
  server:
    value: "nginx.*"
    mode: re
    msg: Must be an nginx server
  x-rate-limit-remaining:
    value: "lambda x: int(x) > 10"
    mode: function
    msg: API call quota is insufficient

cookies:
  session_id: "*"
  auth_token:
    value: "[a-f0-9]{64}"
    mode: re
    msg: Authentication token format is incorrect

text:
  value: "*success*"
  mode: glob
  msg: Response text must contain the success flag

json:
  value:
    "$.data[*].id": [1, 2, 3]
    "$.meta.total": 3
    "$.status": ok
  mode: jsonpath
  msg: Data structure validation failed

function: "lambda resp: resp.elapsed.total_seconds() < 2.0"

Error Handling

When validation fails, the library provides detailed error messages:

from responses_validator import validator, ResponseAssertionError
import requests

resp = requests.get('https://api.example.com')

try:
    # Exception-raising mode
    validator(resp, status_code=200, raise_exception=True)
    print("✅ Validation passed!")
except ResponseAssertionError as e:
    print(f"❌ Validation failed: {e}")

# Or, non-exception-raising mode
errors = validator(resp, status_code=200, raise_exception=False)
if errors:
    for field, message in errors.items():
        print(f"{field}: {message}")
else:
    print("✅ Validation passed!")

Best Practices

  • Use YAML Configuration: For complex validation rules, it is recommended to manage them in YAML files.
  • Choose Validation Modes Wisely: Select the appropriate validation mode based on your needs to avoid over-complication.
  • Provide Clear Error Messages: Provide clear error messages (msg) for important validation rules.
  • Modularize Validation Functions: Extract complex validation logic into separate, reusable functions.
  • Performance Considerations: For high-frequency validations, prioritize simpler validation modes.

FAQ

Q: How do I validate a specific element in an array?

A: Use the JSONPath mode, for example, "$.users[0].name": ["John"].

Q: Are Headers and Cookies case-sensitive?

A: No, the library automatically converts keys to lowercase for matching.

Q: Are there security restrictions on Lambda expressions?

A: Yes, Lambda expressions are executed in a restricted environment and can only use the following built-in functions:

  • Basic types: len, str, int, float, bool, list, dict, tuple, set
  • Math functions: abs, max, min, sum
  • Logical functions: any, all
  • Other safe functions: sorted, reversed, enumerate, zip, range, isinstance, hasattr, getattr
  • Allowed modules: re (for regular expressions)

Q: How can I use simple and detailed configurations at the same time?

A: You can mix them. For any given field, the detailed configuration will take precedence.

Q: jsonpath VS keypath: How to choose?

A:

Comparisonjsonpathkeypath
Example$.user_list.[?(@.age >=18)].nameuser_list[2].name
SyntaxComplex syntax, powerful featuresSimple value retrieval expression
ResultListString
ValidationValidates if the query results are equalUses Text validation
AdvantagePowerful features of jsonpath expressionsMultiple modes of Text validation

In short:

  • In jsonpath mode, all fields undergo equality validation.
  • In keypath mode, individual fields can use different validation modes.

Feedback

wx: python_sanmu

Keywords

requests

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.