Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

rich-logger

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

rich-logger

Table logger using Rich

  • 0.3.1
  • PyPI
  • Socket score

Maintainers
1

tests pypi

rich-logger

Table logger using Rich, aimed at Pytorch Lightning logging

Features

  • display your training logs with pretty rich tables
  • describe your fields with goal ("higher_is_better" or "lower_is_better"), format and name
  • a field descriptor can be matched with any regex
  • a field name can be computed as a regex substitution
  • works in Jupyter notebooks as well as in a command line
  • integrates easily with Pytorch Lightning

Demo

from rich_logger import RichTablePrinter
import time
import random
from tqdm import trange

logger_fields = {
    "step": {},
    "(.*)_precision": {
        "goal": "higher_is_better",
        "format": "{:.4f}",
        "name": r"\1_p",
    },
    "(.*)_recall": {
        "goal": "higher_is_better",
        "format": "{:.4f}",
        "name": r"\1_r",
    },
    "duration": {"format": "{:.1f}", "name": "dur(s)"},
    ".*": True,  # Any other field must be logged at the end
}


def optimization():
    printer = RichTablePrinter(key="step", fields=logger_fields)
    printer.hijack_tqdm()

    t = time.time()
    for i in trange(10):
        time.sleep(random.random() / 3)
        printer.log(
            {
                "step": i,
                "task_precision": i / 10.0 if i < 5 else 0.5 - (i - 5) / 10.0,
            }
        )
        time.sleep(random.random() / 3)
        printer.log(
            {
                "step": i,
                "task_recall": 0.0 if i < 3 else (i - 3) / 10.0,
                "duration": time.time() - t,
            }
        )
        printer.log({"test": i})
        t = time.time()
        for j in trange(5):
            time.sleep(random.random() / 10)

    printer.finalize()


optimization()

Demo

Use it with PytorchLightning

from rich_logger import RichTableLogger

trainer = pl.Trainer(..., logger=[RichTableLogger(key="epoch", fields=logger_fields)])

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc