You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

riskoptima

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

riskoptima

RiskOptima is a powerful Python toolkit for financial risk analysis, portfolio optimization, and advanced quantitative modeling. It integrates state-of-the-art methodologies, including Monte Carlo simulations, Value at Risk (VaR), Conditional VaR (CVaR), Black-Scholes, Heston, and Merton Jump Diffusion models, to aid investors in making data-driven investment decisions.

1.45.0
pipPyPI
Maintainers
1

RiskOptima

image

RiskOptima is a comprehensive Python toolkit for evaluating, managing, and optimizing investment portfolios. This package is designed to empower investors and data scientists by combining financial risk analysis, backtesting, mean-variance optimization, and machine learning capabilities into a single, cohesive package.

Stats

https://pypistats.org/packages/riskoptima

Key Features

  • Portfolio Optimization: Includes mean-variance optimization, efficient frontier calculation, and maximum Sharpe ratio portfolio construction.
  • Risk Management: Compute key financial risk metrics such as Value at Risk (VaR), Conditional Value at Risk (CVaR), volatility, and drawdowns.
  • Backtesting Framework: Simulate historical performance of investment strategies and analyze portfolio dynamics over time.
  • Machine Learning Integration: Future-ready for implementing machine learning models for predictive analytics and advanced portfolio insights.
  • Monte Carlo Simulations: Perform extensive simulations to analyze potential portfolio outcomes. See example here https://github.com/JordiCorbilla/efficient-frontier-monte-carlo-portfolio-optimization
  • Comprehensive Financial Metrics: Calculate returns, Sharpe ratios, covariance matrices, and more.

Installation

See the project here: https://pypi.org/project/riskoptima/

pip install riskoptima

Usage

Example 1: Setting up your portfolio

Create your portfolio table similar to the below:

AssetWeightLabelMarketCap
MO0.04Altria Group Inc.110.0e9
NWN0.14Northwest Natural Gas1.8e9
BKH0.01Black Hills Corp.4.5e9
ED0.01Con Edison30.0e9
PEP0.09PepsiCo Inc.255.0e9
NFG0.16National Fuel Gas5.6e9
KO0.06Coca-Cola Company275.0e9
FRT0.28Federal Realty Inv. Trust9.8e9
GPC0.16Genuine Parts Co.25.3e9
MSEX0.05Middlesex Water Co.2.4e9
import pandas as pd
from riskoptima import RiskOptima

import warnings
warnings.filterwarnings(
    "ignore", 
    category=FutureWarning, 
    message=".*DataFrame.std with axis=None is deprecated.*"
)

# Define your current porfolio with your weights and company names
asset_data = [
    {"Asset": "MO",    "Weight": 0.04, "Label": "Altria Group Inc.",       "MarketCap": 110.0e9},
    {"Asset": "NWN",   "Weight": 0.14, "Label": "Northwest Natural Gas",   "MarketCap": 1.8e9},
    {"Asset": "BKH",   "Weight": 0.01, "Label": "Black Hills Corp.",         "MarketCap": 4.5e9},
    {"Asset": "ED",    "Weight": 0.01, "Label": "Con Edison",                "MarketCap": 30.0e9},
    {"Asset": "PEP",   "Weight": 0.09, "Label": "PepsiCo Inc.",              "MarketCap": 255.0e9},
    {"Asset": "NFG",   "Weight": 0.16, "Label": "National Fuel Gas",         "MarketCap": 5.6e9},
    {"Asset": "KO",    "Weight": 0.06, "Label": "Coca-Cola Company",         "MarketCap": 275.0e9},
    {"Asset": "FRT",   "Weight": 0.28, "Label": "Federal Realty Inv. Trust", "MarketCap": 9.8e9},
    {"Asset": "GPC",   "Weight": 0.16, "Label": "Genuine Parts Co.",         "MarketCap": 25.3e9},
    {"Asset": "MSEX",  "Weight": 0.05, "Label": "Middlesex Water Co.",       "MarketCap": 2.4e9}
]
asset_table = pd.DataFrame(asset_data)

capital = 100_000

asset_table['Portfolio'] = asset_table['Weight'] * capital

ANALYSIS_START_DATE = RiskOptima.get_previous_year_date(RiskOptima.get_previous_working_day(), 1)
ANALYSIS_END_DATE   = RiskOptima.get_previous_working_day()
BENCHMARK_INDEX     = 'SPY'
RISK_FREE_RATE      = 0.05
NUMBER_OF_WEIGHTS   = 10_000
NUMBER_OF_MC_RUNS   = 1_000

Example 1: Creating a Portfolio Area Chart

If you want to know visually how's your portfolio doing right now

RiskOptima.create_portfolio_area_chart(
    asset_table,
    end_date=ANALYSIS_END_DATE,
    lookback_days=2,
    title="Portfolio Area Chart"
)

portfolio_area_chart_20250212_095626

Example 2: Efficient Frontier - Monte Carlo Portfolio Optimization

RiskOptima.plot_efficient_frontier_monte_carlo(
    asset_table,
    start_date=ANALYSIS_START_DATE,
    end_date=ANALYSIS_END_DATE,
    risk_free_rate=RISK_FREE_RATE,
    num_portfolios=NUMBER_OF_WEIGHTS,
    market_benchmark=BENCHMARK_INDEX,
    set_ticks=False,
    x_pos_table=1.15,    # Position for the weight table on the plot
    y_pos_table=0.52,    # Position for the weight table on the plot
    title=f'Efficient Frontier - Monte Carlo Simulation {ANALYSIS_START_DATE} to {ANALYSIS_END_DATE}'
)

efficient_frontier_monter_carlo_20250203_205339

Example 3: Portfolio Optimization using Mean Variance and Machine Learning

RiskOptima.run_portfolio_optimization_mv_ml(
    asset_table=asset_table,
    training_start_date='2022-01-01',
    training_end_date='2023-11-27',
    model_type='Linear Regression',    
    risk_free_rate=RISK_FREE_RATE,
    num_portfolios=100000,
    market_benchmark=[BENCHMARK_INDEX],
    max_volatility=0.25,
    min_weight=0.03,
    max_weight=0.2
)

machine_learning_optimization_20250203_210953

Example 4: Portfolio Optimization using Probability Analysis

RiskOptima.run_portfolio_probability_analysis(
    asset_table=asset_table,
    analysis_start_date=ANALYSIS_START_DATE,
    analysis_end_date=ANALYSIS_END_DATE,
    benchmark_index=BENCHMARK_INDEX,
    risk_free_rate=RISK_FREE_RATE,
    number_of_portfolio_weights=NUMBER_OF_WEIGHTS,
    trading_days_per_year=RiskOptima.get_trading_days(),
    number_of_monte_carlo_runs=NUMBER_OF_MC_RUNS
)

probability_distributions_of_final_fund_returns20250205_212501

Example 5: Macaulay Duration

from riskoptima import RiskOptima
cf = RiskOptima.bond_cash_flows_v2(4, 1000, 0.06, 2)  # 2 years, semi-annual, hence 4 periods
md_2 = RiskOptima.macaulay_duration_v3(cf, 0.05, 2)
md_2

image

Example 6: Market Turns with SPY & VIX Divergence

ANALYSIS_START_DATE = RiskOptima.get_previous_year_date(RiskOptima.get_previous_working_day(), 1)
ANALYSIS_END_DATE   = RiskOptima.get_previous_working_day()

df_signals, df_exits, returns = RiskOptima.run_index_vol_divergence_signals(start_date=ANALYSIS_START_DATE, 
                                                                            end_date=ANALYSIS_END_DATE)

riskoptima_index_vol_divergence_signals_entry_20250316_200414

Documentation

For complete documentation and usage examples, visit the GitHub repository:

RiskOptima GitHub

Contributing

We welcome contributions! If you'd like to improve the package or report issues, please visit the GitHub repository.

License

RiskOptima is licensed under the MIT License.

Support me

Buy Me A Coffee

Keywords

portfolio

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts