Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
[Homepage] [White Paper] [Documentations] [ARISE Initiative]
[10/28/2024] v1.5: Added support for diverse robot embodiments (including humanoids), custom robot composition, composite controllers (including whole body controllers), more teleoperation devices, photo-realistic rendering. [release notes] [documentation]
[11/15/2022] v1.4: Backend migration to DeepMind's official MuJoCo Python binding, robot textures, and bug fixes :robot: [release notes] [documentation]
[10/19/2021] v1.3: Ray tracing and physically based rendering tools :sparkles: and access to additional vision modalities 🎥 [video spotlight] [release notes] [documentation]
[02/17/2021] v1.2: Added observable sensor models :eyes: and dynamics randomization :game_die: [release notes]
[12/17/2020] v1.1: Refactored infrastructure and standardized model classes for much easier environment prototyping :wrench: [release notes]
robosuite is a simulation framework powered by the MuJoCo physics engine for robot learning. It also offers a suite of benchmark environments for reproducible research. The current release (v1.5) features support for diverse robot embodiments (including humanoids), custom robot composition, composite controllers (including whole body controllers), more teleoperation devices, photo-realistic rendering. This project is part of the broader Advancing Robot Intelligence through Simulated Environments (ARISE) Initiative, with the aim of lowering the barriers of entry for cutting-edge research at the intersection of AI and Robotics.
Data-driven algorithms, such as reinforcement learning and imitation learning, provide a powerful and generic tool in robotics. These learning paradigms, fueled by new advances in deep learning, have achieved some exciting successes in a variety of robot control problems. However, the challenges of reproducibility and the limited accessibility of robot hardware (especially during a pandemic) have impaired research progress. The overarching goal of robosuite is to provide researchers with:
This framework was originally developed in late 2017 by researchers in Stanford Vision and Learning Lab (SVL) as an internal tool for robot learning research. Now, it is actively maintained and used for robotics research projects in SVL, the UT Robot Perception and Learning Lab (RPL) and NVIDIA Generalist Embodied Agent Research Group (GEAR). We welcome community contributions to this project. For details, please check out our contributing guidelines.
Robosuite offers a modular design of APIs for building new environments, robot embodiments, and robot controllers with procedural generation. We highlight these primary features below:
Please cite robosuite if you use this framework in your publications:
@inproceedings{robosuite2020,
title={robosuite: A Modular Simulation Framework and Benchmark for Robot Learning},
author={Yuke Zhu and Josiah Wong and Ajay Mandlekar and Roberto Mart\'{i}n-Mart\'{i}n and Abhishek Joshi and Soroush Nasiriany and Yifeng Zhu and Kevin Lin},
booktitle={arXiv preprint arXiv:2009.12293},
year={2020}
}
FAQs
robosuite: A Modular Simulation Framework and Benchmark for Robot Learning
We found that robosuite demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.