Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

scikit-optimize

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

scikit-optimize

Sequential model-based optimization toolbox.

  • 0.10.2
  • PyPI
  • Socket score

Maintainers
2

|Logo|

|pypi| |conda| |CI Status| |binder| |codecov| |Zenodo DOI|

Scikit-Optimize

Scikit-Optimize, or skopt, is a simple and efficient library for optimizing (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy to use in many contexts.

The library is built on top of NumPy, SciPy, and Scikit-Learn.

We do not perform gradient-based optimization. For gradient-based optimization algorithms look at scipy.optimize here <http://docs.scipy.org/doc/scipy/reference/optimize.html>_.

.. figure:: https://raw.githubusercontent.com/holgern/scikit-optimize/main/media/bo-objective.png :alt: Approximated objective

Approximated objective function after 50 iterations of gp_minimize. Plot made using skopt.plots.plot_objective.

Maintaining the codebase

This repo is a copy of the original repositoy at https://github.com/scikit-optimize/scikit-optimize/. As the original repo is now in read-only mode, i decided to continue the development on it on my own. I still have credentials for pypi, so I will publish new releases at https://pypi.org/project/scikit-optimize/. I did my best to include all open PR since 2021 in the new release of scikit-optimize 0.10.

https://scikit-optimize.github.io/ has been moved to http://scikit-optimize.readthedocs.io/.

Install

scikit-optimize requires

  • Python >= 3.8
  • NumPy (>= 1.20.3)
  • SciPy (>= 0.19.1)
  • joblib (>= 0.11)
  • scikit-learn >= 1.0.0
  • matplotlib >= 2.0.0

You can install the latest release with: ::

pip install scikit-optimize

This installs the essentials. To install plotting functionality, you can instead do: ::

pip install 'scikit-optimize[plots]'

This will additionally install Matplotlib.

If you're using Anaconda platform, there is a conda-forge <https://conda-forge.org/>_ package of scikit-optimize: ::

conda install -c conda-forge scikit-optimize

Using conda-forge is probably the easiest way to install scikit-optimize on Windows.

Getting started

Find the minimum of the noisy function f(x) over the range -2 < x < 2 with skopt:

.. code:: python

import numpy as np
from skopt import gp_minimize

def f(x):
    return (np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) +
            np.random.randn() * 0.1)

res = gp_minimize(f, [(-2.0, 2.0)])

For more control over the optimization loop you can use the skopt.Optimizer class:

.. code:: python

from skopt import Optimizer

opt = Optimizer([(-2.0, 2.0)])

for i in range(20):
    suggested = opt.ask()
    y = f(suggested)
    opt.tell(suggested, y)
    print('iteration:', i, suggested, y)

Read our introduction to bayesian optimization <https://scikit-optimize.readthedocs.io/en/latest/auto_examples/bayesian-optimization.html>__ and the other examples_.

Development

The library is still experimental and under development. Checkout the next milestone <https://github.com/holgern/scikit-optimize/milestones>__ for the plans for the next release or look at some easy issues <https://github.com/holgern/scikit-optimize/issues?q=is%3Aissue+is%3Aopen+label%3AEasy>__ to get started contributing.

The development version can be installed through:

::

git clone https://github.com/holgern/scikit-optimize.git
cd scikit-optimize
pip install -e .

Run all tests by executing pytest in the top level directory.

To only run the subset of tests with short run time, you can use pytest -m 'fast_test' (pytest -m 'slow_test' is also possible). To exclude all slow running tests try pytest -m 'not slow_test'.

This is implemented using pytest attributes <https://docs.pytest.org/en/latest/mark.html>__. If a tests runs longer than 1 second, it is marked as slow, else as fast.

All contributors are welcome!

Pre-commit-config

Installation


::

    pip install pre-commit


Using homebrew

::

brew install pre-commit

pre-commit --version
pre-commit 2.10.0

Install the git hook scripts


::

    pre-commit install


Run against all the files
~~~~~~~~~~~~~~~~~~~~~~~~~
::

    pre-commit run --all-files
    pre-commit run --show-diff-on-failure --color=always --all-files


Update package rev in pre-commit yaml

::

pre-commit autoupdate
pre-commit run --show-diff-on-failure --color=always --all-files

Making a Release


The release procedure is almost completely automated. By tagging a new release,
CI will build all required packages and push them to PyPI. To make a release,
create a new issue and work through the following checklist:

* [ ] check if the dependencies in `setup.py` are valid or need unpinning,
* [ ] check that the `doc/whats_new/v0.X.rst` is up-to-date,
* [ ] did the last build of master succeed?
* [ ] create a [new release](https://github.com/holgern/scikit-optimize/releases),
* [ ] ping [conda-forge](https://github.com/conda-forge/scikit-optimize-feedstock).

Before making a release, we usually create a release candidate. If the next
release is v0.X, then the release candidate should be tagged v0.Xrc1.
Mark the release candidate as a "pre-release" on GitHub when you tag it.

Made possible by
----------------

The scikit-optimize project was made possible with the support of

.. image:: https://avatars1.githubusercontent.com/u/18165687?v=4&s=128
   :alt: Wild Tree Tech
   :target: https://wildtreetech.com

.. image:: https://i.imgur.com/lgxboT5.jpg
    :alt: NYU Center for Data Science
    :target: https://cds.nyu.edu/

.. image:: https://i.imgur.com/V1VSIvj.jpg
    :alt: NSF
    :target: https://www.nsf.gov

.. image:: https://i.imgur.com/3enQ6S8.jpg
    :alt: Northrop Grumman
    :target: https://www.northropgrumman.com/Pages/default.aspx

If your employer allows you to work on scikit-optimize during the day and would like
recognition, feel free to add them to the "Made possible by" list.


.. |pypi| image:: https://img.shields.io/pypi/v/scikit-optimize.svg
   :target: https://pypi.python.org/pypi/scikit-optimize
.. |conda| image:: https://anaconda.org/conda-forge/scikit-optimize/badges/version.svg
   :target: https://anaconda.org/conda-forge/scikit-optimize
.. |CI Status| image:: https://github.com/holgern/scikit-optimize/actions/workflows/ci.yml/badge.svg?branch=main
   :target: https://github.com/holgern/scikit-optimize/actions/workflows/ci.yml?query=branch%3Amain
.. |Logo| image:: https://avatars2.githubusercontent.com/u/18578550?v=4&s=80
.. |binder| image:: https://mybinder.org/badge.svg
   :target: https://mybinder.org/v2/gh/holgern/scikit-optimize/main?filepath=examples
.. |Zenodo DOI| image:: https://zenodo.org/badge/768077165.svg
   :target: https://zenodo.org/doi/10.5281/zenodo.10804382
.. |scipy.optimize| replace:: ``scipy.optimize``
.. _scipy.optimize: https://docs.scipy.org/doc/scipy/reference/optimize.html
.. _examples: https://scikit-optimize.readthedocs.io/en/latest/auto_examples/index.html
.. |codecov| image:: https://codecov.io/gh/holgern/scikit-optimize/graph/badge.svg?token=9Mp32drAPj
   :target: https://codecov.io/gh/holgern/scikit-optimize

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc