Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
sdkit (stable diffusion kit) is an easy-to-use library for using Stable Diffusion in your AI Art projects. It is fast, feature-packed, and memory-efficient. It bundles Stable Diffusion along with commonly-used features (like SDXL, ControlNet, LoRA, Embeddings, GFPGAN, RealESRGAN, k-samplers, custom VAE etc). It also includes a model-downloader with a database of commonly used models, and advanced features like running in parallel on multiple GPUs, auto-scanning for malicious models etc.
sdkit (stable diffusion kit) is an easy-to-use library for using Stable Diffusion in your AI Art projects. It is fast, feature-packed, and memory-efficient.
New: Stable Diffusion XL, ControlNets, LoRAs and Embeddings are now supported!
This is a community project, so please feel free to contribute (and to use it in your project)!
The goal is to let you be productive quickly (at your AI art project), so it bundles Stable Diffusion along with commonly-used features (like ControlNets, LoRAs, Textual Inversion Embeddings, GFPGAN and CodeFormer for face restoration, RealESRGAN for upscaling, k-samplers, support for loading custom VAEs, NSFW filter etc).
Advanced features include a model-downloader (with a database of commonly used models), support for running in parallel on multiple GPUs, auto-scanning for malicious models, etc. Full list of features
Tested with Python 3.8. Supports Windows, Linux, and Mac.
Windows/Linux:
pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu116
pip install sdkit
Mac:
pip install sdkit
A simple example for generating an image from a Stable Diffusion model file (already present on the disk):
import sdkit
from sdkit.models import load_model
from sdkit.generate import generate_images
from sdkit.utils import log
context = sdkit.Context()
# set the path to the model file on the disk (.ckpt or .safetensors file)
context.model_paths['stable-diffusion'] = 'D:\\path\\to\\512-base-ema.ckpt'
load_model(context, 'stable-diffusion')
# generate the image
images = generate_images(context, prompt='Photograph of an astronaut riding a horse', seed=42, width=512, height=512)
# save the image
images[0].save("image.png") # images is a list of PIL.Image
log.info("Generated images!")
A simple example for automatically downloading a known Stable Diffusion model file:
import sdkit
from sdkit.models import download_models, resolve_downloaded_model_path, load_model
from sdkit.generate import generate_images
from sdkit.utils import save_images
context = sdkit.Context()
download_models(context, models={'stable-diffusion': '1.5-pruned-emaonly'}) # downloads the known "SD 1.5-pruned-emaonly" model
context.model_paths['stable-diffusion'] = resolve_downloaded_model_path(context, 'stable-diffusion', '1.5-pruned-emaonly')
load_model(context, 'stable-diffusion')
images = generate_images(context, prompt='Photograph of an astronaut riding a horse', seed=42, width=512, height=512)
save_images(images, dir_path='D:\\path\\to\\images\\directory')
Please see the list of examples, to learn how to use the other features (like filters, VAE, ControlNet, Embeddings, LoRA, memory optimizations, running on multiple GPUs etc).
Please see the API Reference page for a detailed summary.
Broadly, the API contains 5 modules:
sdkit.models # load/unloading models, downloading known models, scanning models
sdkit.generate # generating images
sdkit.filter # face restoration, upscaling
sdkit.train # model merge, and (in the future) more training methods
sdkit.utils
And a sdkit.Context
object is passed around, which encapsulates the data related to the runtime (e.g. device
and vram_optimizations
) as well as references to the loaded model files and paths. Context
is a thread-local object.
Click here to see the list of known models.
sdkit includes a database of known models and their configurations. This lets you download a known model with a single line of code. (You can customize where it saves the downloaded model)
Additionally, sdkit will attempt to automatically determine the configuration for a given model (when loading from disk). E.g. if an SD 2.1 model is being loaded, sdkit will automatically know to use fp32
for attn_precision
. If an SD 2.0 v-type model is being loaded, sdkit will automatically know to use the v2-inference-v.yaml
configuration. It does this by matching the quick-hash of the given model file, with the list of known quick-hashes.
For models that don't match a known hash (e.g. custom models), or if you want to override the config file, you can set the path to the config file in context.model_paths
. e.g. context.model_paths['stable-diffusion'] = 'path/to/config.yaml'
It was born out of a popular Stable Diffusion UI, splitting out the battle-tested core engine into sdkit
.
Features include: SD 2.1, SDXL, ControlNet, LoRAs, Embeddings, txt2img, img2img, inpainting, NSFW filter, multiple GPU support, Mac Support, GFPGAN and CodeFormer (fix faces), RealESRGAN (upscale), 16 samplers (including k-samplers and UniPC), custom VAE, low-memory optimizations, model merging, safetensor support, picklescan, etc. Click here to see the full list of features.
š¢ We're looking to add support for Lycoris, AMD, Pix2Pix, and outpainting. We'd love some code contributions for these!
It is pretty fast, and close to the fastest. For the same image, sdkit
took 5.5 seconds, while automatic1111
WebUI took 4.95 seconds. š¢ We're looking for code contributions to make sdkit
even faster!
xformers
is supported experimentally, which will make sdkit
even faster.
Details of the benchmark:
Windows 11, NVIDIA 3060 12GB, 512x512 image, sd-v1-4.ckpt, euler_a sampler, number of steps: 25, seed 42, guidance scale 7.5.
No xformers. No VRAM optimizations for low-memory usage.
Time taken | Iterations/sec | Peak VRAM usage | |
---|---|---|---|
sdkit | 5.5 sec | 6.0 it/s | 5.1 GB |
automatic1111 webui | 4.95 sec | 6.15 it/s | 5.1 GB |
Yes. It works on NVIDIA/Mac GPUs with at least 2GB of VRAM. For PCs without a compatible GPU, it can run entirely on the CPU. Running on the CPU will be very slow, but at least you'll be able to try it out!
š¢ We don't support AMD yet on Windows (it'll run in CPU mode, or in Linux), but we're looking for code contributions for AMD support!
You can certainly use diffusers. sdkit
is in fact using diffusers
internally, so you can think of sdkit
as a convenient API and a collection of tools, focused on Stable Diffusion projects.
sdkit
:
.ckpt
and .safetensors
model format.If your project is using sdkit, you can add it to this list. Please feel free to open a pull request (or let us know at our Discord community).
We'd love to accept code contributions. Please feel free to drop by our Discord community!
š¢ We're looking for code contributions for these features (or anything else you'd like to work on):
If you'd like to set up a developer version on your PC (to contribute code changes), please follow these instructions.
Instructions for running automated tests: Running Tests.
The authors of this project are not responsible for any content generated using this project.
The license of this software forbids you from sharing any content that:
For the full list of restrictions please read the License. By using this software you agree to the terms.
FAQs
sdkit (stable diffusion kit) is an easy-to-use library for using Stable Diffusion in your AI Art projects. It is fast, feature-packed, and memory-efficient. It bundles Stable Diffusion along with commonly-used features (like SDXL, ControlNet, LoRA, Embeddings, GFPGAN, RealESRGAN, k-samplers, custom VAE etc). It also includes a model-downloader with a database of commonly used models, and advanced features like running in parallel on multiple GPUs, auto-scanning for malicious models etc.
We found that sdkit demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago.Ā It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.