Serde
.. image:: https://img.shields.io/pypi/v/serde.svg?style=flat-square&colorB=4c1
:target: https://pypi.org/project/serde/
:alt: PyPI Version
.. image:: https://img.shields.io/badge/docs-passing-brightgreen.svg?style=flat-square
:target: https://rossmacarthur.github.io/serde/
:alt: Documentation Status
.. image:: https://img.shields.io/github/workflow/status/rossmacarthur/serde/build/master?style=flat-square
:target: https://github.com/rossmacarthur/serde/actions?query=workflow%3Abuild
:alt: Build Status
.. image:: https://img.shields.io/codecov/c/github/rossmacarthur/serde.svg?style=flat-square
:target: https://codecov.io/gh/rossmacarthur/serde
:alt: Code Coverage
.. image:: https://img.shields.io/badge/code%20style-black-101010.svg?style=flat-square
:target: https://github.com/psf/black
:alt: Code Style
Serde is a lightweight, general-purpose framework for defining, serializing,
deserializing, and validating data structures in Python.
.. contents::
:backlinks: none
:local:
:depth: 2
Getting started
Installation
^^^^^^^^^^^^
Serde is available on PyPI, you can install it using
.. code-block:: sh
pip install serde
Extended features can be installed with the ext
feature.
.. code-block:: sh
pip install serde[ext]
Introduction
^^^^^^^^^^^^
In Serde models are containers for fields. Data structures are defined by
subclassing Model
and assigning Field
instances as class annotations.
These fields handle serialization, deserialization, normalization, and
validation for the corresponding model attributes.
.. code-block:: python
from datetime import date
from serde import Model, fields
class Artist(Model):
name: fields.Str()
class Album(Model):
title: fields.Str()
release_date: fields.Optional(fields.Date)
artist: fields.Nested(Artist)
album = Album(
title='Dangerously in Love',
release_date=date(2003, 6, 23),
artist=Artist(name='Beyoncé')
)
assert album.to_dict() == {
'title': 'Dangerously in Love',
'release_date': '2003-06-23',
'artist': {
'name': 'Beyoncé'
}
}
album = Album.from_json("""{
"title": "Lemonade",
"artist": {"name": "Beyoncé"}}"
""")
assert album == Album(title='Lemonade', artist=Artist(name='Beyoncé'))
Basic usage
Below we create a User
model by subclassing Model
and adding the
name
and email
fields.
.. code-block:: python
>>> from datetime import datetime
>>> from serde import Model, fields
>>>
>>> class User(Model):
... name: fields.Str(rename='username')
... email: fields.Email()
The corresponding attribute names are used to instantiate the model object and
access the values on the model instance.
.. code-block:: python
>>> user = User(name='Linus Torvalds', email='torvalds@linuxfoundation.org')
>>> user.name
'Linus Torvalds'
>>> user.email
'torvalds@linuxfoundation.org'
Models are validated when they are instantiated and a ValidationError
is
raised if you provide invalid values.
.. code-block:: python
>>> User(name='Linus Torvalds', email='not an email')
Traceback (most recent call last):
...
serde.exceptions.ValidationError: {'email': 'invalid email'}
Models are serialized into primitive Python types using the to_dict()
method
on the model instance.
.. code-block:: python
>>> user.to_dict()
OrderedDict([('username', 'Linus Torvalds'), ('email', 'torvalds@linuxfoundation.org')])
Or to JSON using the to_json()
method.
.. code-block:: python
>>> user.to_json()
'{"username": "Linus Torvalds", "email": "torvalds@linuxfoundation.org"}'
Models are also validated when they are deserialized. Models are deserialized
from primitive Python types using the reciprocal from_dict()
class method.
.. code-block:: python
>>> user = User.from_dict({
... 'username': 'Donald Knuth',
... 'email': 'noreply@stanford.edu'
... })
Or from JSON using the from_json()
method.
.. code-block:: python
>>> user = User.from_json('''{
... "username": "Donald Knuth",
... "email": "noreply@stanford.edu"
... }''')
Attempting to deserialize invalid data will result in a ValidationError
.
.. code-block:: python
>>> User.from_dict({'username': 'Donald Knuth'})
Traceback (most recent call last):
...
serde.exceptions.ValidationError: {'email': "missing data, expected field 'email'"}
Models
Models can be nested and used in container-like fields. Below we create a
Blog
with an author and a list of subscribers which must all be User
instances.
.. code-block:: python
>>> class Blog(Model):
... title: fields.Str()
... author: fields.Nested(User)
... subscribers: fields.List(User)
When instantiating you have to supply instances of the nested models.
.. code-block:: python
>>> blog = Blog(
... title="sobolevn's personal blog",
... author=User(name='Nikita Sobolev', email='mail@sobolevn.me'),
... subscribers=[
... User(name='Ned Batchelder', email='ned@nedbatchelder.com')
... ]
... )
Serializing a Blog
would serialize the entire nested structure.
.. code-block:: python
>>> print(blog.to_json(indent=2))
{
"title": "sobolevn's personal blog",
"author": {
"username": "Nikita Sobolev",
"email": "mail@sobolevn.me"
},
"subscribers": [
{
"username": "Ned Batchelder",
"email": "ned@nedbatchelder.com"
}
]
}
Similiarly deserializing a Blog
would deserialize the entire nested
structure, and create instances of all the submodels.
Subclassed models
^^^^^^^^^^^^^^^^^
Models can be subclassed. The subclass will have all the fields of the parent
and any additional ones. Consider the case where we define a SuperUser
model
which is a subclass of a User
. Simply a User
that has an extra level
field.
.. code-block:: python
>>> class SuperUser(User):
... # inherits name and email fields from User
... level: fields.Choice(['admin', 'read-only'])
We instantiate a subclassed model as normal by passing in each field value.
.. code-block:: python
>>> superuser = SuperUser(
... name='Linus Torvalds',
... email='torvalds@linuxfoundation.org',
... level='admin'
... )
This is great for many cases, however, a commonly desired paradigm is to be able
to have the User.from_dict()
class method be able to deserialize a
SuperUser
as well. This can be made possible through model tagging.
Model tagging
Model tagging is a way to mark serialized data in order to show that it is a
particular variant of a model. Serde provides three types of model tagging,
but you can also define you own custom Tag
. A Tag
can be thought of in
the same way as a Field
but instead of deserializing data into an attribute
on a model instance, it deserializes data into a model class.
Internally tagged
^^^^^^^^^^^^^^^^^
Internally tagged data stores a tag value inside the serialized data.
Let us consider an example where we define a Pet
model with a tag
. We
can then subclass this model and deserialize arbitrary subclasses using the
tagged model.
.. code-block:: python
>>> from serde import Model, fields, tags
>>>
>>> class Pet(Model):
... name: fields.Str()
...
... class Meta:
... tag = tags.Internal(tag='species')
...
>>> class Dog(Pet):
... hates_cats: fields.Bool()
...
>>> class Cat(Pet):
... hates_dogs: fields.Bool()
We refer to the Dog
and Cat
subclasses as variants of Pet
. When
serializing all parent model tag serialization is done after field
serialization.
.. code-block:: python
>>> Cat(name='Fluffy', hates_dogs=True).to_dict()
OrderedDict([('name', 'Fluffy'), ('hates_dogs', True), ('species', '__main__.Cat')])
When deserializing, tag deserialization is done first to determine which model
to use for the deserialization.
.. code-block:: python
>>> milo = Pet.from_dict({
... 'name': 'Milo',
... 'hates_cats': False,
... 'species': '__main__.Dog'
... })
>>> milo.__class__
<class '__main__.Dog'>
>>> milo.name
'Milo'
>>> milo.hates_cats
False
An invalid or missing tag will raise a ValidationError
.
.. code-block:: python
>>> Pet.from_dict({'name': 'Milo', 'hates_cats': False})
Traceback (most recent call last):
...
serde.exceptions.ValidationError: missing data, expected tag 'species'
>>>
>>> Pet.from_dict({'name': 'Duke', 'species': '__main__.Horse'})
Traceback (most recent call last):
...
serde.exceptions.ValidationError: no variant found
Externally tagged
^^^^^^^^^^^^^^^^^
Externally tagged data uses the tag value as a key and nests the content
underneath that key. All other processes behave similarly to the internally
tagged example above.
.. code-block:: python
>>> class Pet(Model):
... name: fields.Str()
...
... class Meta:
... tag = tags.External()
...
>>> class Dog(Pet):
... hates_cats: fields.Bool()
...
>>> Dog(name='Max', hates_cats=True).to_dict()
OrderedDict([('__main__.Dog', OrderedDict([('name', 'Max'), ('hates_cats', True)]))])
Adjacently tagged
^^^^^^^^^^^^^^^^^
Adjacently tagged data data stores the tag value and the content underneath two
separate keys. All other processes behave similarly to the internally tagged
example.
.. code-block:: python
>>> class Pet(Model):
... name: fields.Str()
...
... class Meta:
... tag = tags.Adjacent(tag='species', content='data')
...
>>> class Dog(Pet):
... hates_cats: fields.Bool()
...
>>> Dog(name='Max', hates_cats=True).to_dict()
OrderedDict([('species', '__main__.Dog'), ('data', OrderedDict([('name', 'Max'), ('hates_cats', True)]))])
Abstract models
^^^^^^^^^^^^^^^
By default model tagging still allows deserialization of the base model. It is
common to have this model be abstract. You can do this by setting the
abstract
Meta field to True
. This will make it uninstantiatable and it
won't be included in the variant list during deserialization.
.. code-block:: python
>>> class Fruit(Model):
... class Meta:
... abstract = True
...
>>> Fruit()
Traceback (most recent call last):
...
TypeError: unable to instantiate abstract model 'Fruit'
Custom tags
^^^^^^^^^^^
It is possible to create your own custom tag class by subclassing any of
tags.External
, tags.Internal
, tags.Adjacent
or even the base
tags.Tag
. This will allow customization of how the variants are looked up,
how the tag values are generated for variants, and how the data is serialized.
Consider an example where we use a class attribute code
as the tag value.
.. code-block:: python
>>> class Custom(tags.Internal):
... def lookup_tag(self, variant):
... return variant.code
...
>>> class Pet(Model):
... name: fields.Str()
...
... class Meta:
... abstract = True
... tag = Custom(tag='code')
...
>>> class Dog(Pet):
... code = 1
... hates_cats: fields.Bool()
...
>>> Dog(name='Max', hates_cats=True).to_dict()
OrderedDict([('name', 'Max'), ('hates_cats', True), ('code', 1)])
>>> max = Pet.from_dict({'name': 'Max', 'hates_cats': True, 'code': 1})
>>> max.__class__
<class '__main__.Dog'>
>>> max.name
'Max'
>>> max.hates_cats
True
Fields
Fields do the work of serializing, deserializing, normalizing, and validating
the input values. Fields are always assigned to a model as instances , and
they support extra serialization, deserialization, normalization, and validation
of values without having to subclass Field
. For example
.. code-block:: python
from serde import Model, fields, validators
class Album(Model):
title: fields.Str(normalizers=[str.strip])
released: fields.Date(
rename='release_date',
validators=[validators.Min(datetime.date(1912, 4, 15))]
)
In the above example we define an Album
class. The title
field is of
type str
, and we apply the str.strip
normalizer to automatically strip
the input value when instantiating or deserializing the Album
. The
released
field is of type datetime.date
and we apply an extra validator
to only accept dates after 15th April 1912. Note: the rename
argument only
applies to the serializing and deserializing of the data, the Album
class
would still be instantiated using Album(released=...)
.
If these methods of creating custom Field
classes are not satisfactory, you
can always subclass a Field
and override the relevant methods.
.. code-block:: python
>>> class Percent(fields.Float):
... def validate(self, value):
... super().validate(value)
... validators.Between(0.0, 100.0)(value)
Model states and processes
In Serde, there are two states that the data can be in:
- Serialized data
- Model instance
There are five different processes that the data structure can go through when
moving between these two states.
- Deserialization happens when you create a model instance from a serialized
version using
from_dict()
or similar. - Instantiation happens when you construct a model instance in Python using the
__init__()
constructor. - Normalization happens after instantiation and after deserialization. This is
usually a way to transform things before they are validated. For example: this
is where an
Optional
field sets default values. - Validation is where the model and fields values are validated. This happens
after normalization.
- Serialization is when you serialize a model instance to a supported
serialization format using
to_dict()
or similar.
The diagram below shows how the stages (uppercase) and processes (lowercase) fit
in with each other.
.. code-block:: text
+---------------+
| Instantiation |
+---------------+
|
v
+---------------+ +---------------+
|Deserialization|-->| Normalization |
+---------------+ +---------------+
^ |
| v
| +---------------+
| | Validation |
| +---------------+
| |
| v
+-------+-------+ +---------------+
|SERIALIZED DATA| | MODEL INSTANCE|
+---------------+ +---------------+
^ |
| |
+-------+-------+ |
| Serialization |<----------+
+---------------+
License
Serde is licensed under either of
at your option.