Socket
Socket
Sign inDemoInstall

sregion

Package Overview
Dependencies
0
Maintainers
1
Alerts
File Explorer

Install Socket

Detect and block malicious and high-risk dependencies

Install

    sregion

Parsing of IVOA S_REGION strings


Maintainers
1

Readme

python package

sregion

Parsing of IVOA S_REGION strings

The STS-C formalism is described at http://www.ivoa.net/Documents/latest/STC-S.html, though it seems that it was never adopted as an official standard. Nevertheless, the s_region strings do seem to have been adopted as a sort of pseudostandard in IVOA-compliant datasets / databases.

astropy-regions would probably be a better place to put this, but I'm not interested in all of the full astropy coordinate compatibility for now.

Examples

>>> import numpy as np
>>> from sregion import SRegion

#
# Polygon string
#
>>> sr = SRegion('POLYGON 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0')
>>> print(sr.area)
[1.0]
>>> print(sr.centroid)
[array([0.5, 0.5])]

#
# Circle string
#
>>> for i in range(4,10):
>>>     sr = SRegion('CIRCLE 10 10 1', ncircle=2**i)
>>>     print(f'ncircle={2**i:>3} {sr.area[0]/np.pi:.5f} {sr.centroid[0]}')
ncircle= 16 0.97450 [10. 10.]
ncircle= 32 0.99359 [10. 10.]
ncircle= 64 0.99839 [10. 10.]
ncircle=128 0.99960 [10. 10.]
ncircle=256 0.99990 [10. 10.]
ncircle=512 0.99997 [10. 10.]

# Circle with radius in angular units
>>> import astropy.units as u
>>> sr = SRegion('CIRCLE 10 10 1"', ncircle=256)
>>> print(f'{sr.sky_area(unit=u.arcsec**2)[0]:.5f}')
3.14128 arcsec2

#
# From WCS objects
#
>>> from astropy.wcs import WCS
>>> wcs = WCS()
>>> wcs.pixel_shape = [601,601]
>>> wcs.wcs.cdelt *= 0.1/3600
>>> wcs.wcs.crpix[1] = 300
>>> wcs.wcs.crval = [0,0]
>>> print(SRegion(wcs).sky_area())
[<Quantity 1. arcmin2>]

#
# From arrays
#
>>> x = np.array([0, 0, 1, 1])
>>> y = np.array([0, 1, 1, 0])
>>> sr = SRegion(np.array([x, y]).T)
>>> print(sr.area)
[1.0]
>>> print(sr.centroid)
[array([0.5, 0.5])]

# 
# To s_region string
#
>>> print(sr.s_region)
POLYGON 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 0.000000

#
# To matplotlib path object(s)
#
>>> print(sr.path[0].contains_point([0.5, 0.5]))
True
>>> print(sr.path[0].contains_points([[0.5, 0.5], [2.0, 2.0]]))
[ True False]

#
# To matplotlib patch(es)
#
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1,1,figsize=(2,2))
>>> for p in sr.patch(alpha=0.5, fc='r'):
>>>     ax.add_patch(p)
>>> ax.set_xlim(-1, 2)
>>> ax.set_ylim(*ax.get_xlim())
>>> ax.grid()

#
# To shapely polygons
# 
>>> sr.shapely
[<shapely.geometry.polygon.Polygon at 0x18055b910>]

#
# To DS9 region(s)
#
>>> for r in sr.region:
>>>    print(r)
polygon(0.000000,0.000000,0.000000,1.000000,1.000000,1.000000,1.000000,0.000000)

>>> sr.ds9_properties = 'color=red width=2'
>>> sr.label = 'my_group'
>>> for r in sr.region:
>>>    print(r)
polygon(0.000000,0.000000,0.000000,1.000000,1.000000,1.000000,1.000000,0.000000) # color=red width=2 text={my_group}

    

FAQs


Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc