
Security News
Meet Socket at Black Hat and DEF CON 2025 in Las Vegas
Meet Socket at Black Hat & DEF CON 2025 for 1:1s, insider security talks at Allegiant Stadium, and a private dinner with top minds in software supply chain security.
.. image:: https://img.shields.io/badge/kafka-1.1%2C%201.0%2C%200.11%2C%200.10%2C%200.9%2C%200.8-brightgreen.svg :target: https://kafka-python.readthedocs.io/compatibility.html .. image:: https://img.shields.io/pypi/pyversions/kafka-python.svg :target: https://pypi.python.org/pypi/kafka-python .. image:: https://coveralls.io/repos/dpkp/kafka-python/badge.svg?branch=master&service=github :target: https://coveralls.io/github/dpkp/kafka-python?branch=master .. image:: https://travis-ci.org/dpkp/kafka-python.svg?branch=master :target: https://travis-ci.org/dpkp/kafka-python .. image:: https://img.shields.io/badge/license-Apache%202-blue.svg :target: https://github.com/dpkp/kafka-python/blob/master/LICENSE
Python client for the Apache Kafka distributed stream processing system. kafka-python is designed to function much like the official java client, with a sprinkling of pythonic interfaces (e.g., consumer iterators).
kafka-python is best used with newer brokers (0.9+), but is backwards-compatible with older versions (to 0.8.0). Some features will only be enabled on newer brokers. For example, fully coordinated consumer groups -- i.e., dynamic partition assignment to multiple consumers in the same group -- requires use of 0.9+ kafka brokers. Supporting this feature for earlier broker releases would require writing and maintaining custom leadership election and membership / health check code (perhaps using zookeeper or consul). For older brokers, you can achieve something similar by manually assigning different partitions to each consumer instance with config management tools like chef, ansible, etc. This approach will work fine, though it does not support rebalancing on failures. See https://kafka-python.readthedocs.io/en/master/compatibility.html for more details.
Please note that the master branch may contain unreleased features. For release documentation, please see readthedocs and/or python's inline help.
pip install kafka-python
KafkaConsumer
KafkaConsumer is a high-level message consumer, intended to operate as similarly as possible to the official java client. Full support for coordinated consumer groups requires use of kafka brokers that support the Group APIs: kafka v0.9+.
See https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html for API and configuration details.
The consumer iterator returns ConsumerRecords, which are simple namedtuples that expose basic message attributes: topic, partition, offset, key, and value:
from kafka import KafkaConsumer consumer = KafkaConsumer('my_favorite_topic') for msg in consumer: ... print (msg)
join a consumer group for dynamic partition assignment and offset commits
from kafka import KafkaConsumer consumer = KafkaConsumer('my_favorite_topic', group_id='my_favorite_group') for msg in consumer: ... print (msg)
manually assign the partition list for the consumer
from kafka import TopicPartition consumer = KafkaConsumer(bootstrap_servers='localhost:1234') consumer.assign([TopicPartition('foobar', 2)]) msg = next(consumer)
Deserialize msgpack-encoded values
consumer = KafkaConsumer(value_deserializer=msgpack.loads) consumer.subscribe(['msgpackfoo']) for msg in consumer: ... assert isinstance(msg.value, dict)
Access record headers. The returned value is a list of tuples
with str, bytes for key and value
for msg in consumer: ... print (msg.headers)
Get consumer metrics
metrics = consumer.metrics()
KafkaProducer
KafkaProducer is a high-level, asynchronous message producer. The class is intended to operate as similarly as possible to the official java client. See https://kafka-python.readthedocs.io/en/master/apidoc/KafkaProducer.html for more details.
from kafka import KafkaProducer producer = KafkaProducer(bootstrap_servers='localhost:1234') for _ in range(100): ... producer.send('foobar', b'some_message_bytes')
Block until a single message is sent (or timeout)
future = producer.send('foobar', b'another_message') result = future.get(timeout=60)
Block until all pending messages are at least put on the network
NOTE: This does not guarantee delivery or success! It is really
only useful if you configure internal batching using linger_ms
producer.flush()
Use a key for hashed-partitioning
producer.send('foobar', key=b'foo', value=b'bar')
Serialize json messages
import json producer = KafkaProducer(value_serializer=lambda v: json.dumps(v).encode('utf-8')) producer.send('fizzbuzz', {'foo': 'bar'})
Serialize string keys
producer = KafkaProducer(key_serializer=str.encode) producer.send('flipflap', key='ping', value=b'1234')
Compress messages
producer = KafkaProducer(compression_type='gzip') for i in range(1000): ... producer.send('foobar', b'msg %d' % i)
Include record headers. The format is list of tuples with string key
and bytes value.
producer.send('foobar', value=b'c29tZSB2YWx1ZQ==', headers=[('content-encoding', b'base64')])
Get producer performance metrics
metrics = producer.metrics()
Thread safety
The KafkaProducer can be used across threads without issue, unlike the KafkaConsumer which cannot.
While it is possible to use the KafkaConsumer in a thread-local manner, multiprocessing is recommended.
Compression
kafka-python supports gzip compression/decompression natively. To produce or consume lz4 compressed messages, you should install python-lz4 (pip install lz4). To enable snappy compression/decompression install python-snappy (also requires snappy library). See https://kafka-python.readthedocs.io/en/master/install.html#optional-snappy-install for more information.
Protocol
A secondary goal of kafka-python is to provide an easy-to-use protocol layer for interacting with kafka brokers via the python repl. This is useful for testing, probing, and general experimentation. The protocol support is leveraged to enable a KafkaClient.check_version() method that probes a kafka broker and attempts to identify which version it is running (0.8.0 to 1.1+).
Low-level
Legacy support is maintained for low-level consumer and producer classes, SimpleConsumer and SimpleProducer. See https://kafka-python.readthedocs.io/en/master/simple.html?highlight=SimpleProducer for API details.
FAQs
Pure Python client for Apache Kafka
We found that stack-kafka-python demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Meet Socket at Black Hat & DEF CON 2025 for 1:1s, insider security talks at Allegiant Stadium, and a private dinner with top minds in software supply chain security.
Security News
CAI is a new open source AI framework that automates penetration testing tasks like scanning and exploitation up to 3,600× faster than humans.
Security News
Deno 2.4 brings back bundling, improves dependency updates and telemetry, and makes the runtime more practical for real-world JavaScript projects.