šŸš€ Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more →
Socket
DemoInstallSign in
Socket

stacking-sats-pipeline

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

stacking-sats-pipeline

Hypertrial's Stacking Sats Library - Optimized Bitcoin DCA

0.0.1
PyPI
Maintainers
1

Stacking Sats Pipeline

A Bitcoin DCA strategy backtesting framework for testing strategies against historical price data.

Quick Start

Library Interface

from stacking_sats_pipeline import backtest, strategy

# Simple function approach
def my_strategy(df):
    """Calculate weights based on price data"""
    # Your strategy logic here
    return weights

results = backtest(my_strategy)
results.summary()
results.plot()

# Or use decorator approach
@strategy(name="My Strategy", auto_backtest=True)
def my_strategy(df):
    return weights

Note: Data is now loaded directly into memory from CoinMetrics (no CSV files needed). For legacy file-based loading, use load_data(use_memory=False).

Interactive Tutorial

pip install marimo
marimo edit tutorials/examples.py

Command Line

pip install -r requirements.txt
python main.py --strategy path/to/your_strategy.py

Usage Examples

Basic Strategy

def simple_ma_strategy(df):
    """Buy more when price is below 200-day moving average"""
    df = df.copy()
    past_price = df["PriceUSD"].shift(1)
    df["ma200"] = past_price.rolling(window=200, min_periods=1).mean()
    
    base_weight = 1.0 / len(df)
    weights = pd.Series(base_weight, index=df.index)
    
    # Buy 50% more when below MA
    below_ma = df["PriceUSD"] < df["ma200"]
    weights[below_ma] *= 1.5
    
    return weights / weights.sum()

results = backtest(simple_ma_strategy)

Quick Comparison

strategy1_perf = quick_backtest(strategy1)
strategy2_perf = quick_backtest(strategy2)

Custom Parameters

results = backtest(
    my_strategy,
    start_date="2021-01-01",
    end_date="2023-12-31",
    cycle_years=2
)

Strategy Requirements

Your strategy function must:

def your_strategy(df: pd.DataFrame) -> pd.Series:
    """
    Args:
        df: DataFrame with 'PriceUSD' column and datetime index
        
    Returns:
        pd.Series with weights that sum to 1.0 per cycle
    """
    # Your logic here
    return weights

Validation Rules:

  • Weights sum to 1.0 within each cycle
  • All weights positive (≄ 1e-5)
  • No forward-looking data
  • Return pandas Series indexed by date

Testing

The project includes a comprehensive test suite covering all major functionality:

# Install development dependencies
pip install -e ".[dev]"

# Run all tests
pytest

# Run specific test categories
pytest -m "not integration"  # Skip integration tests
pytest -m integration        # Run only integration tests

# Run tests with coverage
pytest --cov=stacking_sats_pipeline

# Run specific test files
pytest tests/test_backtest.py
pytest tests/test_strategy.py

For detailed testing documentation, see TESTS.md.

Command Line Options

# Basic usage
python main.py --strategy your_strategy.py

# Skip plots
python main.py --strategy your_strategy.py --no-plot

# Run simulation
python main.py --strategy your_strategy.py --simulate --budget 1000000

# Historical weight calculator (coinmetrics data only)
python -m weights.weight_calculator 1000 2020-01-01 2023-12-31 --save

Project Structure

ā”œā”€ā”€ main.py              # Pipeline orchestrator
ā”œā”€ā”€ tutorials/examples.py # Interactive notebook
ā”œā”€ā”€ backtest/            # Validation & simulation
ā”œā”€ā”€ data/                # Price data pipeline (in-memory loading)
ā”œā”€ā”€ plot/                # Visualization
ā”œā”€ā”€ strategy/            # Strategy templates
└── weights/             # Historical allocation calculator

Output

The pipeline provides:

  • Validation Report: Strategy compliance
  • Performance Metrics: SPD (Sats Per Dollar) statistics
  • Comparative Analysis: vs Uniform DCA and Static DCA
  • Visualizations: Weight distribution plots

Example Output

============================================================
COMPREHENSIVE STRATEGY VALIDATION
============================================================
āœ… ALL VALIDATION CHECKS PASSED

Your Strategy Performance:
Dynamic SPD: mean=4510.21, median=2804.03
Dynamic SPD Percentile: mean=39.35%, median=43.80%

Mean Excess vs Uniform DCA: -0.40%
Mean Excess vs Static DCA: 9.35%

Keywords

bitcoin

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts