
Security News
OWASP 2025 Top 10 Adds Software Supply Chain Failures, Ranked Top Community Concern
OWASP’s 2025 Top 10 introduces Software Supply Chain Failures as a new category, reflecting rising concern over dependency and build system risks.
strato-query
Advanced tools
tools to help create queries to StratoDem's API
$ pip install strato-query
library(devtools)
devtools::install_github('StratoDem/strato-query')
strato_query looks for an API_TOKEN environment variable.
# Example passing a StratoDem Analytics API token to a Python file using the API
$ API_TOKEN=my-api-token-here python examples/examples.py
from strato_query.base_API_query import *
from strato_query.standard_filters import *
# Finds median household income in the US for those 80+ from 2010 to 2013
df = BaseAPIQuery.query_api_df(
query_params=APIMedianQueryParams(
query_type='MEDIAN',
table='incomeforecast_us_annual_income_group_age',
data_fields=('year', {'median_value': 'median_income'}),
median_variable_name='income_g',
data_filters=(
GtrThanOrEqFilter(var='age_g', val=17).to_dict(),
BetweenFilter(var='year', val=[2010, 2013]).to_dict(),
),
groupby=('year',),
order=('year',),
aggregations=(),
)
)
print('Median US household income 80+:')
print(df.head())
library(stRatoquery)
# Finds median household income in the US for those 80+ from 2010 to 2013
df = submit_api_query(
query = median_query_params(
table = 'incomeforecast_us_annual_income_group_age',
data_fields = api_fields(fields_list = list('year', 'geoid2', list(median_value = 'median_hhi'))),
data_filters = list(
ge_filter(filter_variable = 'age_g', filter_value = 17),
between_filter(filter_variable = 'year', filter_value = c(2010, 2013))
),
groupby=c('year'),
median_variable_name='income_g',
aggregations=list()
),
apiToken = 'my-api-token-here')
print('Median US household income 80+:')
print(head(df))
Output:
Median US household income 80+:
MEDIAN_VALUE YEAR
0 27645 2010
1 29269 2011
2 30474 2012
3 30712 2013
from strato_query.base_API_query import *
from strato_query.standard_filters import *
df = BaseAPIQuery.query_api_df(
query_params=APIQueryParams(
query_type='COUNT',
table='populationforecast_metro_annual_population',
data_fields=('year', 'cbsa', {'population': 'population'}),
data_filters=(
LessThanFilter(var='year', val=2015).to_dict(),
EqFilter(var='cbsa', val=14454).to_dict(),
),
aggregations=(dict(aggregation_func='sum', variable_name='population'),),
groupby=('cbsa', 'year'),
order=('year',),
join=APIQueryParams(
query_type='AREA',
table='geocookbook_metro_na_shapes_full',
data_fields=('cbsa', 'area', 'name'),
data_filters=(),
groupby=('cbsa', 'name'),
aggregations=(),
on=dict(left=('cbsa',), right=('cbsa',)),
)
)
)
df['POP_PER_SQ_MI'] = df['POPULATION'].div(df['AREA'])
df_final = df[['YEAR', 'NAME', 'POP_PER_SQ_MI']]
print('Population density in the Boston MSA up to 2015:')
print(df_final.head())
print('Results truncated')
library(stRatoquery)
df = submit_api_query(
query = api_query_params(
table = 'populationforecast_metro_annual_population',
data_fields = api_fields(fields_list = list('year', 'cbsa', list(population = 'population'))),
data_filters = list(
lt_filter(filter_variable = 'year', filter_value = 2015),
eq_filter(filter_variable = 'cbsa', filter_value = 14454)
),
groupby=c('year'),
aggregations = list(sum_aggregation(variable_name = 'population')),
join = api_query_params(
table = 'geocookbook_metro_na_shapes_full',
query_type = 'AREA',
data_fields = api_fields(fields_list = list('cbsa', 'area', 'name')),
data_filters = list(),
groupby = c('cbsa', 'name'),
aggregations = list(),
on = list(left = c('cbsa'), right = c('cbsa'))
)
),
apiToken = 'my-api-token-here')
Output:
Population density in the Boston MSA up to 2015:
YEAR NAME POP_PER_SQ_MI
0 2000 Boston, MA 1139.046639
1 2001 Boston, MA 1149.129937
2 2002 Boston, MA 1153.094740
3 2003 Boston, MA 1152.352351
4 2004 Boston, MA 1149.932307
Results truncated
from strato_query.base_API_query import *
from strato_query.standard_filters import *
class ExampleAPIQuery(BaseAPIQuery):
@classmethod
def get_df_from_API_call(cls, **kwargs):
# This API call will return the population 65+ in 2018 within 5 miles of the lat/long pair
age_filter = GtrThanOrEqFilter(
var='age_g',
val=14).to_dict()
year_filter = EqFilter(
var='year',
val=2018).to_dict()
mile_radius_filter = dict(
filter_type='mile_radius',
filter_value=dict(
latitude=26.606484,
longitude=-81.851531,
miles=5),
filter_variable='')
df = cls.query_api_df(
query_params=APIQueryParams(
table='populationforecast_tract_annual_population_age',
data_fields=('POPULATION',),
data_filters=(age_filter, year_filter, mile_radius_filter),
query_type='COUNT',
aggregations=(),
groupby=()
)
)
return df
FAQs
StratoDem Analytics API tools
We found that strato-query demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
OWASP’s 2025 Top 10 introduces Software Supply Chain Failures as a new category, reflecting rising concern over dependency and build system risks.

Research
/Security News
Socket researchers discovered nine malicious NuGet packages that use time-delayed payloads to crash applications and corrupt industrial control systems.

Security News
Socket CTO Ahmad Nassri discusses why supply chain attacks now target developer machines and what AI means for the future of enterprise security.