New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

strato-query

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

strato-query

StratoDem Analytics API tools

  • 3.10.2
  • PyPI
  • Socket score

Maintainers
1

Strato-Query

tools to help create queries to StratoDem's API

Installation and usage

Python:
$ pip install strato-query
R:
library(devtools)
devtools::install_github('StratoDem/strato-query')

Authentication

strato_query looks for an API_TOKEN environment variable.

# Example passing a StratoDem Analytics API token to a Python file using the API
$ API_TOKEN=my-api-token-here python examples/examples.py

Median household income for 80+ households across the US, by year

Python:
from strato_query.base_API_query import *
from strato_query.standard_filters import *


# Finds median household income in the US for those 80+ from 2010 to 2013
df = BaseAPIQuery.query_api_df(
    query_params=APIMedianQueryParams(
        query_type='MEDIAN',
        table='incomeforecast_us_annual_income_group_age',
        data_fields=('year', {'median_value': 'median_income'}),
        median_variable_name='income_g',
        data_filters=(
            GtrThanOrEqFilter(var='age_g', val=17).to_dict(),
            BetweenFilter(var='year', val=[2010, 2013]).to_dict(),
        ),
        groupby=('year',),
        order=('year',),
        aggregations=(),
    )
)

print('Median US household income 80+:')
print(df.head())
R:
library(stRatoquery)


# Finds median household income in the US for those 80+ from 2010 to 2013
df = submit_api_query(
  query = median_query_params(
    table = 'incomeforecast_us_annual_income_group_age',
    data_fields = api_fields(fields_list = list('year', 'geoid2', list(median_value = 'median_hhi'))),
    data_filters = list(
        ge_filter(filter_variable = 'age_g', filter_value = 17),
        between_filter(filter_variable = 'year', filter_value = c(2010, 2013))
    ),
    groupby=c('year'),
    median_variable_name='income_g',
    aggregations=list()
  ),
  apiToken = 'my-api-token-here')

print('Median US household income 80+:')
print(head(df))

Output:

Median US household income 80+:
   MEDIAN_VALUE  YEAR
0         27645  2010
1         29269  2011
2         30474  2012
3         30712  2013

Population density in the Boston MSA

Python:
from strato_query.base_API_query import *
from strato_query.standard_filters import *


df = BaseAPIQuery.query_api_df(
    query_params=APIQueryParams(
        query_type='COUNT',
        table='populationforecast_metro_annual_population',
        data_fields=('year', 'cbsa', {'population': 'population'}),
        data_filters=(
            LessThanFilter(var='year', val=2015).to_dict(),
            EqFilter(var='cbsa', val=14454).to_dict(),
        ),
        aggregations=(dict(aggregation_func='sum', variable_name='population'),),
        groupby=('cbsa', 'year'),
        order=('year',),
        join=APIQueryParams(
            query_type='AREA',
            table='geocookbook_metro_na_shapes_full',
            data_fields=('cbsa', 'area', 'name'),
            data_filters=(),
            groupby=('cbsa', 'name'),
            aggregations=(),
            on=dict(left=('cbsa',), right=('cbsa',)),
        )
    )
)

df['POP_PER_SQ_MI'] = df['POPULATION'].div(df['AREA'])
df_final = df[['YEAR', 'NAME', 'POP_PER_SQ_MI']]

print('Population density in the Boston MSA up to 2015:')
print(df_final.head())
print('Results truncated')
R:
library(stRatoquery)

df = submit_api_query(
  query = api_query_params(
    table = 'populationforecast_metro_annual_population',
    data_fields = api_fields(fields_list = list('year', 'cbsa', list(population = 'population'))),
    data_filters = list(
        lt_filter(filter_variable = 'year', filter_value = 2015),
        eq_filter(filter_variable = 'cbsa', filter_value = 14454)
    ),
    groupby=c('year'),
    aggregations = list(sum_aggregation(variable_name = 'population')),
    join = api_query_params(
        table = 'geocookbook_metro_na_shapes_full',
        query_type = 'AREA',
        data_fields = api_fields(fields_list = list('cbsa', 'area', 'name')),
        data_filters = list(),
        groupby = c('cbsa', 'name'),
        aggregations = list(),
        on = list(left = c('cbsa'), right = c('cbsa'))
    )
  ),
  apiToken = 'my-api-token-here')

Output:

Population density in the Boston MSA up to 2015:
   YEAR        NAME  POP_PER_SQ_MI
0  2000  Boston, MA    1139.046639
1  2001  Boston, MA    1149.129937
2  2002  Boston, MA    1153.094740
3  2003  Boston, MA    1152.352351
4  2004  Boston, MA    1149.932307
Results truncated

Example use of query base class with API call and example filter

from strato_query.base_API_query import *
from strato_query.standard_filters import *


class ExampleAPIQuery(BaseAPIQuery):
    @classmethod
    def get_df_from_API_call(cls, **kwargs):
        # This API call will return the population 65+ in 2018 within 5 miles of the lat/long pair
        age_filter = GtrThanOrEqFilter(
            var='age_g',
            val=14).to_dict()

        year_filter = EqFilter(
            var='year',
            val=2018).to_dict()

        mile_radius_filter = dict(
            filter_type='mile_radius',
            filter_value=dict(
                latitude=26.606484,
                longitude=-81.851531,
                miles=5),
            filter_variable='')

        df = cls.query_api_df(
            query_params=APIQueryParams(
                table='populationforecast_tract_annual_population_age',
                data_fields=('POPULATION',),
                data_filters=(age_filter, year_filter, mile_radius_filter),
                query_type='COUNT',
                aggregations=(),
                groupby=()
            )
        )

        return df

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc