
Security News
Browserslist-rs Gets Major Refactor, Cutting Binary Size by Over 1MB
Browserslist-rs now uses static data to reduce binary size by over 1MB, improving memory use and performance for Rust-based frontend tools.
tools to help create queries to StratoDem's API
$ pip install strato-query
library(devtools)
devtools::install_github('StratoDem/strato-query')
strato_query
looks for an API_TOKEN
environment variable.
# Example passing a StratoDem Analytics API token to a Python file using the API
$ API_TOKEN=my-api-token-here python examples/examples.py
from strato_query.base_API_query import *
from strato_query.standard_filters import *
# Finds median household income in the US for those 80+ from 2010 to 2013
df = BaseAPIQuery.query_api_df(
query_params=APIMedianQueryParams(
query_type='MEDIAN',
table='incomeforecast_us_annual_income_group_age',
data_fields=('year', {'median_value': 'median_income'}),
median_variable_name='income_g',
data_filters=(
GtrThanOrEqFilter(var='age_g', val=17).to_dict(),
BetweenFilter(var='year', val=[2010, 2013]).to_dict(),
),
groupby=('year',),
order=('year',),
aggregations=(),
)
)
print('Median US household income 80+:')
print(df.head())
library(stRatoquery)
# Finds median household income in the US for those 80+ from 2010 to 2013
df = submit_api_query(
query = median_query_params(
table = 'incomeforecast_us_annual_income_group_age',
data_fields = api_fields(fields_list = list('year', 'geoid2', list(median_value = 'median_hhi'))),
data_filters = list(
ge_filter(filter_variable = 'age_g', filter_value = 17),
between_filter(filter_variable = 'year', filter_value = c(2010, 2013))
),
groupby=c('year'),
median_variable_name='income_g',
aggregations=list()
),
apiToken = 'my-api-token-here')
print('Median US household income 80+:')
print(head(df))
Output:
Median US household income 80+:
MEDIAN_VALUE YEAR
0 27645 2010
1 29269 2011
2 30474 2012
3 30712 2013
from strato_query.base_API_query import *
from strato_query.standard_filters import *
df = BaseAPIQuery.query_api_df(
query_params=APIQueryParams(
query_type='COUNT',
table='populationforecast_metro_annual_population',
data_fields=('year', 'cbsa', {'population': 'population'}),
data_filters=(
LessThanFilter(var='year', val=2015).to_dict(),
EqFilter(var='cbsa', val=14454).to_dict(),
),
aggregations=(dict(aggregation_func='sum', variable_name='population'),),
groupby=('cbsa', 'year'),
order=('year',),
join=APIQueryParams(
query_type='AREA',
table='geocookbook_metro_na_shapes_full',
data_fields=('cbsa', 'area', 'name'),
data_filters=(),
groupby=('cbsa', 'name'),
aggregations=(),
on=dict(left=('cbsa',), right=('cbsa',)),
)
)
)
df['POP_PER_SQ_MI'] = df['POPULATION'].div(df['AREA'])
df_final = df[['YEAR', 'NAME', 'POP_PER_SQ_MI']]
print('Population density in the Boston MSA up to 2015:')
print(df_final.head())
print('Results truncated')
library(stRatoquery)
df = submit_api_query(
query = api_query_params(
table = 'populationforecast_metro_annual_population',
data_fields = api_fields(fields_list = list('year', 'cbsa', list(population = 'population'))),
data_filters = list(
lt_filter(filter_variable = 'year', filter_value = 2015),
eq_filter(filter_variable = 'cbsa', filter_value = 14454)
),
groupby=c('year'),
aggregations = list(sum_aggregation(variable_name = 'population')),
join = api_query_params(
table = 'geocookbook_metro_na_shapes_full',
query_type = 'AREA',
data_fields = api_fields(fields_list = list('cbsa', 'area', 'name')),
data_filters = list(),
groupby = c('cbsa', 'name'),
aggregations = list(),
on = list(left = c('cbsa'), right = c('cbsa'))
)
),
apiToken = 'my-api-token-here')
Output:
Population density in the Boston MSA up to 2015:
YEAR NAME POP_PER_SQ_MI
0 2000 Boston, MA 1139.046639
1 2001 Boston, MA 1149.129937
2 2002 Boston, MA 1153.094740
3 2003 Boston, MA 1152.352351
4 2004 Boston, MA 1149.932307
Results truncated
from strato_query.base_API_query import *
from strato_query.standard_filters import *
class ExampleAPIQuery(BaseAPIQuery):
@classmethod
def get_df_from_API_call(cls, **kwargs):
# This API call will return the population 65+ in 2018 within 5 miles of the lat/long pair
age_filter = GtrThanOrEqFilter(
var='age_g',
val=14).to_dict()
year_filter = EqFilter(
var='year',
val=2018).to_dict()
mile_radius_filter = dict(
filter_type='mile_radius',
filter_value=dict(
latitude=26.606484,
longitude=-81.851531,
miles=5),
filter_variable='')
df = cls.query_api_df(
query_params=APIQueryParams(
table='populationforecast_tract_annual_population_age',
data_fields=('POPULATION',),
data_filters=(age_filter, year_filter, mile_radius_filter),
query_type='COUNT',
aggregations=(),
groupby=()
)
)
return df
FAQs
StratoDem Analytics API tools
We found that strato-query demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Browserslist-rs now uses static data to reduce binary size by over 1MB, improving memory use and performance for Rust-based frontend tools.
Research
Security News
Eight new malicious Firefox extensions impersonate games, steal OAuth tokens, hijack sessions, and exploit browser permissions to spy on users.
Security News
The official Go SDK for the Model Context Protocol is in development, with a stable, production-ready release expected by August 2025.