
Research
Malicious fezbox npm Package Steals Browser Passwords from Cookies via Innovative QR Code Steganographic Technique
A malicious package uses a QR code as steganography in an innovative technique.
strato-query
Advanced tools
tools to help create queries to StratoDem's API
$ pip install strato-query
library(devtools)
devtools::install_github('StratoDem/strato-query')
strato_query
looks for an API_TOKEN
environment variable.
# Example passing a StratoDem Analytics API token to a Python file using the API
$ API_TOKEN=my-api-token-here python examples/examples.py
from strato_query.base_API_query import *
from strato_query.standard_filters import *
# Finds median household income in the US for those 80+ from 2010 to 2013
df = BaseAPIQuery.query_api_df(
query_params=APIMedianQueryParams(
query_type='MEDIAN',
table='incomeforecast_us_annual_income_group_age',
data_fields=('year', {'median_value': 'median_income'}),
median_variable_name='income_g',
data_filters=(
GtrThanOrEqFilter(var='age_g', val=17).to_dict(),
BetweenFilter(var='year', val=[2010, 2013]).to_dict(),
),
groupby=('year',),
order=('year',),
aggregations=(),
)
)
print('Median US household income 80+:')
print(df.head())
library(stRatoquery)
# Finds median household income in the US for those 80+ from 2010 to 2013
df = submit_api_query(
query = median_query_params(
table = 'incomeforecast_us_annual_income_group_age',
data_fields = api_fields(fields_list = list('year', 'geoid2', list(median_value = 'median_hhi'))),
data_filters = list(
ge_filter(filter_variable = 'age_g', filter_value = 17),
between_filter(filter_variable = 'year', filter_value = c(2010, 2013))
),
groupby=c('year'),
median_variable_name='income_g',
aggregations=list()
),
apiToken = 'my-api-token-here')
print('Median US household income 80+:')
print(head(df))
Output:
Median US household income 80+:
MEDIAN_VALUE YEAR
0 27645 2010
1 29269 2011
2 30474 2012
3 30712 2013
from strato_query.base_API_query import *
from strato_query.standard_filters import *
df = BaseAPIQuery.query_api_df(
query_params=APIQueryParams(
query_type='COUNT',
table='populationforecast_metro_annual_population',
data_fields=('year', 'cbsa', {'population': 'population'}),
data_filters=(
LessThanFilter(var='year', val=2015).to_dict(),
EqFilter(var='cbsa', val=14454).to_dict(),
),
aggregations=(dict(aggregation_func='sum', variable_name='population'),),
groupby=('cbsa', 'year'),
order=('year',),
join=APIQueryParams(
query_type='AREA',
table='geocookbook_metro_na_shapes_full',
data_fields=('cbsa', 'area', 'name'),
data_filters=(),
groupby=('cbsa', 'name'),
aggregations=(),
on=dict(left=('cbsa',), right=('cbsa',)),
)
)
)
df['POP_PER_SQ_MI'] = df['POPULATION'].div(df['AREA'])
df_final = df[['YEAR', 'NAME', 'POP_PER_SQ_MI']]
print('Population density in the Boston MSA up to 2015:')
print(df_final.head())
print('Results truncated')
library(stRatoquery)
df = submit_api_query(
query = api_query_params(
table = 'populationforecast_metro_annual_population',
data_fields = api_fields(fields_list = list('year', 'cbsa', list(population = 'population'))),
data_filters = list(
lt_filter(filter_variable = 'year', filter_value = 2015),
eq_filter(filter_variable = 'cbsa', filter_value = 14454)
),
groupby=c('year'),
aggregations = list(sum_aggregation(variable_name = 'population')),
join = api_query_params(
table = 'geocookbook_metro_na_shapes_full',
query_type = 'AREA',
data_fields = api_fields(fields_list = list('cbsa', 'area', 'name')),
data_filters = list(),
groupby = c('cbsa', 'name'),
aggregations = list(),
on = list(left = c('cbsa'), right = c('cbsa'))
)
),
apiToken = 'my-api-token-here')
Output:
Population density in the Boston MSA up to 2015:
YEAR NAME POP_PER_SQ_MI
0 2000 Boston, MA 1139.046639
1 2001 Boston, MA 1149.129937
2 2002 Boston, MA 1153.094740
3 2003 Boston, MA 1152.352351
4 2004 Boston, MA 1149.932307
Results truncated
from strato_query.base_API_query import *
from strato_query.standard_filters import *
class ExampleAPIQuery(BaseAPIQuery):
@classmethod
def get_df_from_API_call(cls, **kwargs):
# This API call will return the population 65+ in 2018 within 5 miles of the lat/long pair
age_filter = GtrThanOrEqFilter(
var='age_g',
val=14).to_dict()
year_filter = EqFilter(
var='year',
val=2018).to_dict()
mile_radius_filter = dict(
filter_type='mile_radius',
filter_value=dict(
latitude=26.606484,
longitude=-81.851531,
miles=5),
filter_variable='')
df = cls.query_api_df(
query_params=APIQueryParams(
table='populationforecast_tract_annual_population_age',
data_fields=('POPULATION',),
data_filters=(age_filter, year_filter, mile_radius_filter),
query_type='COUNT',
aggregations=(),
groupby=()
)
)
return df
FAQs
StratoDem Analytics API tools
We found that strato-query demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
A malicious package uses a QR code as steganography in an innovative technique.
Research
/Security News
Socket identified 80 fake candidates targeting engineering roles, including suspected North Korean operators, exposing the new reality of hiring as a security function.
Application Security
/Research
/Security News
Socket detected multiple compromised CrowdStrike npm packages, continuing the "Shai-Hulud" supply chain attack that has now impacted nearly 500 packages.