New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

streamlit-lightweight-charts

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

streamlit-lightweight-charts

Wrapper for TradingView `lightweight-charts`

  • 0.7.20
  • PyPI
  • Socket score

Maintainers
1

streamlit-lightweight-charts

Streamlit wrapper for performant Tradingview's Financial: lightweight-charts

The Lightweight Charts library is the best choice to display financial data as an interactive chart on a web page without affecting loading speed and performance.

  • Features Demo
  • Documentation
  • GitHub
  • Pypi

Versions

  • Version 0.7.19 - FIX: React build was not been commited
  • Version 0.7.20 - Example loading from CSV

How to install:

python -m pip install streamlit-lightweight-charts

How to use:

from streamlit_lightweight_charts import renderLightweightCharts

renderLightweightCharts(charts: <List of Dicts> , key: <str>)

API

  • charts: <List of Dicts>

    • chart: <Dict>

    • series: <List of Dicts>

      • type: <str-enum> [ Area, Bar, Baseline, Candlestick, Histogram, Line ]

      • data: <List of Dicts> accordingly to series type

      • options: <Dict> with style options

      • priceScale: <Dict> optional

      • markers: <List of Dicts> optional

  • key: <str> when creating multiple charts in one page


e.g.:


Overlaid Charts

Price with Volume Chart

Click for a working sample on Streamlit Cloud ⬆


import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts
import streamlit_lightweight_charts.dataSamples as data

priceVolumeChartOptions = {
    "height": 400,
    "rightPriceScale": {
        "scaleMargins": {
            "top": 0.2,
            "bottom": 0.25,
        },
        "borderVisible": False,
    },
    "overlayPriceScales": {
        "scaleMargins": {
            "top": 0.7,
            "bottom": 0,
        }
    },
    "layout": {
        "background": {
            "type": 'solid',
            "color": '#131722'
        },
        "textColor": '#d1d4dc',
    },
    "grid": {
        "vertLines": {
            "color": 'rgba(42, 46, 57, 0)',
        },
        "horzLines": {
            "color": 'rgba(42, 46, 57, 0.6)',
        }
    }
}

priceVolumeSeries = [
    {
        "type": 'Area',
        "data": data.priceVolumeSeriesArea,
        "options": {
            "topColor": 'rgba(38,198,218, 0.56)',
            "bottomColor": 'rgba(38,198,218, 0.04)',
            "lineColor": 'rgba(38,198,218, 1)',
            "lineWidth": 2,
        }
    },
    {
        "type": 'Histogram',
        "data": data.priceVolumeSeriesHistogram,
        "options": {
            "color": '#26a69a',
            "priceFormat": {
                "type": 'volume',
            },
            "priceScaleId": "" # set as an overlay setting,
        },
        "priceScale": {
            "scaleMargins": {
                "top": 0.7,
                "bottom": 0,
            }
        }
    }
]
st.subheader("Price and Volume Series Chart")

renderLightweightCharts([
    {
        "chart": priceVolumeChartOptions,
        "series": priceVolumeSeries
    }
], 'priceAndVolume')


Overlaid Areas Chart

Click for a working sample on Streamlit Cloud ⬆


import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts
import streamlit_lightweight_charts.dataSamples as data

overlaidAreaSeriesOptions = {
    "height": 400,
    "rightPriceScale": {
        "scaleMargins": {
            "top": 0.1,
            "bottom": 0.1,
        },
        "mode": 2, # PriceScaleMode: 0-Normal, 1-Logarithmic, 2-Percentage, 3-IndexedTo100
        "borderColor": 'rgba(197, 203, 206, 0.4)',
    },
    "timeScale": {
        "borderColor": 'rgba(197, 203, 206, 0.4)',
    },
    "layout": {
        "background": {
            "type": 'solid',
            "color": '#100841'
        },
        "textColor": '#ffffff',
    },
    "grid": {
        "vertLines": {
            "color": 'rgba(197, 203, 206, 0.4)',
            "style": 1, # LineStyle: 0-Solid, 1-Dotted, 2-Dashed, 3-LargeDashed
        },
        "horzLines": {
            "color": 'rgba(197, 203, 206, 0.4)',
            "style": 1, # LineStyle: 0-Solid, 1-Dotted, 2-Dashed, 3-LargeDashed
        }
    }
}

seriesOverlaidChart = [
    {
        "type": 'Area',
        "data": data.seriesMultipleChartArea01,
        "options": {
            "topColor": 'rgba(255, 192, 0, 0.7)',
            "bottomColor": 'rgba(255, 192, 0, 0.3)',
            "lineColor": 'rgba(255, 192, 0, 1)',
            "lineWidth": 2,
        },
        "markers": [
            {
                "time": '2019-04-08',
                "position": 'aboveBar',
                "color": 'rgba(255, 192, 0, 1)',
                "shape": 'arrowDown',
                "text": 'H',
                "size": 3
            },
            {
                "time": '2019-05-13',
                "position": 'belowBar',
                "color": 'rgba(255, 192, 0, 1)',
                "shape": 'arrowUp',
                "text": 'L',
                "size": 3
            },
        ]
    },
    {
        "type": 'Area',
        "data": data.seriesMultipleChartArea02,
        "options": {
            "topColor": 'rgba(67, 83, 254, 0.7)',
            "bottomColor": 'rgba(67, 83, 254, 0.3)',
            "lineColor": 'rgba(67, 83, 254, 1)',
            "lineWidth": 2,
        },
        "markers": [

            {
                "time": '2019-05-03',
                "position": 'aboveBar',
                "color": 'rgba(67, 83, 254, 1)',
                "shape": 'arrowDown',
                "text": 'PEAK',
                "size": 3
            },
        ]
    }
]
st.subheader("Overlaid Series with Markers")

renderLightweightCharts([
    {
        "chart": overlaidAreaSeriesOptions,
        "series": seriesOverlaidChart
    }
], 'overlaid')

Streamlit integration

Data Toggling for an Area Chart

Click for a working sample on Streamlit Cloud ⬆


import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts
import streamlit_lightweight_charts.dataSamples as data

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

st.subheader("Data Toggling for an Area Chart")

data_select = st.sidebar.radio('Select data source:', ('Area 01', 'Area 02'))

if data_select == 'Area 01':
    renderLightweightCharts( [
        {
            "chart": chartOptions,
            "series": [{
                "type": 'Area',
                "data": data.seriesMultipleChartArea01,
                "options": {}
            }],
        }
    ], 'area')
else:
    renderLightweightCharts( [
        {
            "chart": chartOptions,
            "series": [{
                "type": 'Area',
                "data": data.seriesMultipleChartArea02,
                "options": {}
            }],
        }
    ], 'area')


Multi Pane Chart with Pandas

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

import json
import numpy as np
import yfinance as yf
import pandas as pd
import pandas_ta as ta

COLOR_BULL = 'rgba(38,166,154,0.9)' # #26a69a
COLOR_BEAR = 'rgba(239,83,80,0.9)'  # #ef5350

# Request historic pricing data via finance.yahoo.com API
df = yf.Ticker('AAPL').history(period='4mo')[['Open', 'High', 'Low', 'Close', 'Volume']]

# Some data wrangling to match required format
df = df.reset_index()
df.columns = ['time','open','high','low','close','volume']                  # rename columns
df['time'] = df['time'].dt.strftime('%Y-%m-%d')                             # Date to string
df['color'] = np.where(  df['open'] > df['close'], COLOR_BEAR, COLOR_BULL)  # bull or bear
df.ta.macd(close='close', fast=6, slow=12, signal=5, append=True)           # calculate macd

# export to JSON format
candles = json.loads(df.to_json(orient = "records"))
volume = json.loads(df.rename(columns={"volume": "value",}).to_json(orient = "records"))
macd_fast = json.loads(df.rename(columns={"MACDh_6_12_5": "value"}).to_json(orient = "records"))
macd_slow = json.loads(df.rename(columns={"MACDs_6_12_5": "value"}).to_json(orient = "records"))
df['color'] = np.where(  df['MACD_6_12_5'] > 0, COLOR_BULL, COLOR_BEAR)  # MACD histogram color
macd_hist = json.loads(df.rename(columns={"MACD_6_12_5": "value"}).to_json(orient = "records"))


chartMultipaneOptions = [
    {
        "width": 600,
        "height": 400,
        "layout": {
            "background": {
                "type": "solid",
                "color": 'white'
            },
            "textColor": "black"
        },
        "grid": {
            "vertLines": {
                "color": "rgba(197, 203, 206, 0.5)"
                },
            "horzLines": {
                "color": "rgba(197, 203, 206, 0.5)"
            }
        },
        "crosshair": {
            "mode": 0
        },
        "priceScale": {
            "borderColor": "rgba(197, 203, 206, 0.8)"
        },
        "timeScale": {
            "borderColor": "rgba(197, 203, 206, 0.8)",
            "barSpacing": 15
        },
        "watermark": {
            "visible": True,
            "fontSize": 48,
            "horzAlign": 'center',
            "vertAlign": 'center',
            "color": 'rgba(171, 71, 188, 0.3)',
            "text": 'AAPL - D1',
        }
    },
    {
        "width": 600,
        "height": 100,
        "layout": {
            "background": {
                "type": 'solid',
                "color": 'transparent'
            },
            "textColor": 'black',
        },
        "grid": {
            "vertLines": {
                "color": 'rgba(42, 46, 57, 0)',
            },
            "horzLines": {
                "color": 'rgba(42, 46, 57, 0.6)',
            }
        },
        "timeScale": {
            "visible": False,
        },
        "watermark": {
            "visible": True,
            "fontSize": 18,
            "horzAlign": 'left',
            "vertAlign": 'top',
            "color": 'rgba(171, 71, 188, 0.7)',
            "text": 'Volume',
        }
    },
    {
        "width": 600,
        "height": 200,
        "layout": {
            "background": {
                "type": "solid",
                "color": 'white'
            },
            "textColor": "black"
        },
        "timeScale": {
            "visible": False,
        },
        "watermark": {
            "visible": True,
            "fontSize": 18,
            "horzAlign": 'left',
            "vertAlign": 'center',
            "color": 'rgba(171, 71, 188, 0.7)',
            "text": 'MACD',
        }
    }
]

seriesCandlestickChart = [
    {
        "type": 'Candlestick',
        "data": candles,
        "options": {
            "upColor": COLOR_BULL,
            "downColor": COLOR_BEAR,
            "borderVisible": False,
            "wickUpColor": COLOR_BULL,
            "wickDownColor": COLOR_BEAR
        }
    }
]

seriesVolumeChart = [
    {
        "type": 'Histogram',
        "data": volume,
        "options": {
            "priceFormat": {
                "type": 'volume',
            },
            "priceScaleId": "" # set as an overlay setting,
        },
        "priceScale": {
            "scaleMargins": {
                "top": 0,
                "bottom": 0,
            },
            "alignLabels": False
        }
    }
]

seriesMACDchart = [
    {
        "type": 'Line',
        "data": macd_fast,
        "options": {
            "color": 'blue',
            "lineWidth": 2
        }
    },
    {
        "type": 'Line',
        "data": macd_slow,
        "options": {
            "color": 'green',
            "lineWidth": 2
        }
    },
    {
        "type": 'Histogram',
        "data": macd_hist,
        "options": {
            "color": 'red',
            "lineWidth": 1
        }
    }
]

st.subheader("Multipane Chart with Pandas")

renderLightweightCharts([
    {
        "chart": chartMultipaneOptions[0],
        "series": seriesCandlestickChart
    },
    {
        "chart": chartMultipaneOptions[1],
        "series": seriesVolumeChart
    },
    {
        "chart": chartMultipaneOptions[2],
        "series": seriesMACDchart
    }
], 'multipane')


Multi Pane Chart (intraday) from CSV)

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

import json
import numpy as np
import pandas as pd

COLOR_BULL = 'rgba(38,166,154,0.9)' # #26a69a
COLOR_BEAR = 'rgba(239,83,80,0.9)'  # #ef5350

CSVFILE = 'https://github.com/freyastreamlit/streamlit-lightweight-charts/blob/main/examples/MultiPaneChartsFromCSV.csv?raw=true'

df = pd.read_csv(CSVFILE, skiprows=0, parse_dates=['datetime'], skip_blank_lines=True)

df['time'] = df['datetime'].view('int64') // 10**9  # We will use time in UNIX timestamp
df['color'] = np.where(  df['open'] > df['close'], COLOR_BEAR, COLOR_BULL)  # bull or bear

# export to JSON format
candles = json.loads(
    df.filter(['time','open','high','low','close'], axis=1)
      .to_json(orient = "records") )

volume = json.loads(
    df.filter(['time','volume'], axis=1)
      .rename(columns={"volume": "value",})
      .to_json(orient = "records") )

macd_fast = json.loads(
    df.filter(['time','macd_fast'], axis=1)
      .rename(columns={"macd_fast": "value"})
      .to_json(orient = "records"))

macd_slow = json.loads(
    df.filter(['time','macd_slow'], axis=1)
      .rename(columns={"macd_slow": "value"})
      .to_json(orient = "records"))

df['color'] = np.where(  df['macd_hist'] > 0, COLOR_BULL, COLOR_BEAR)  # MACD histogram color
macd_hist = json.loads(
    df.filter(['time','macd_hist'], axis=1)
      .rename(columns={"macd_hist": "value"})
      .to_json(orient = "records"))

chartMultipaneOptions = [
    {
        "width": 600,
        "height": 400,
        "layout": {
            "background": {
                "type": "solid",
                "color": 'white'
            },
            "textColor": "black"
        },
        "grid": {
            "vertLines": {
                "color": "rgba(197, 203, 206, 0.5)"
                },
            "horzLines": {
                "color": "rgba(197, 203, 206, 0.5)"
            }
        },
        "crosshair": {
            "mode": 0
        },
        "priceScale": {
            "borderColor": "rgba(197, 203, 206, 0.8)"
        },
        "timeScale": {
            "borderColor": "rgba(197, 203, 206, 0.8)",
            "barSpacing": 10,
            "minBarSpacing": 8,
            "timeVisible": True,
            "secondsVisible": False,
        },
        "watermark": {
            "visible": True,
            "fontSize": 48,
            "horzAlign": 'center',
            "vertAlign": 'center',
            "color": 'rgba(171, 71, 188, 0.3)',
            "text": 'Intraday',
        }
    },
    {
        "width": 600,
        "height": 100,
        "layout": {
            "background": {
                "type": 'solid',
                "color": 'transparent'
            },
            "textColor": 'black',
        },
        "grid": {
            "vertLines": {
                "color": 'rgba(42, 46, 57, 0)',
            },
            "horzLines": {
                "color": 'rgba(42, 46, 57, 0.6)',
            }
        },
        "timeScale": {
            "visible": False,
        },
        "watermark": {
            "visible": True,
            "fontSize": 18,
            "horzAlign": 'left',
            "vertAlign": 'top',
            "color": 'rgba(171, 71, 188, 0.7)',
            "text": 'Volume',
        }
    },
    {
        "width": 600,
        "height": 200,
        "layout": {
            "background": {
                "type": "solid",
                "color": 'white'
            },
            "textColor": "black"
        },
        "timeScale": {
            "visible": False,
        },
        "watermark": {
            "visible": True,
            "fontSize": 18,
            "horzAlign": 'left',
            "vertAlign": 'center',
            "color": 'rgba(171, 71, 188, 0.7)',
            "text": 'MACD',
        }
    }
]

seriesCandlestickChart = [
    {
        "type": 'Candlestick',
        "data": candles,
        "options": {
            "upColor": COLOR_BULL,
            "downColor": COLOR_BEAR,
            "borderVisible": False,
            "wickUpColor": COLOR_BULL,
            "wickDownColor": COLOR_BEAR
        }
    }
]

seriesVolumeChart = [
    {
        "type": 'Histogram',
        "data": volume,
        "options": {
            "priceFormat": {
                "type": 'volume',
            },
            "priceScaleId": "" # set as an overlay setting,
        },
        "priceScale": {
            "scaleMargins": {
                "top": 0,
                "bottom": 0,
            },
            "alignLabels": False
        }
    }
]

seriesMACDchart = [
    {
        "type": 'Line',
        "data": macd_fast,
        "options": {
            "color": 'blue',
            "lineWidth": 2
        }
    },
    {
        "type": 'Line',
        "data": macd_slow,
        "options": {
            "color": 'green',
            "lineWidth": 2
        }
    },
    {
        "type": 'Histogram',
        "data": macd_hist,
        "options": {
            # "color": 'red',
            "lineWidth": 1
        }
    }
]

st.subheader("Multipane Chart (intraday) from CSV")

renderLightweightCharts([
    {
        "chart": chartMultipaneOptions[0],
        "series": seriesCandlestickChart
    },
    {
        "chart": chartMultipaneOptions[1],
        "series": seriesVolumeChart
    },
    {
        "chart": chartMultipaneOptions[2],
        "series": seriesMACDchart
    }
], 'multipane')


Basic charts

Line Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesLineChart = [{
    "type": 'Line',
    "data": [
        { "time": '2018-12-22', "value": 32.51 },
        { "time": '2018-12-23', "value": 31.11 },
        { "time": '2018-12-24', "value": 27.02 },
        { "time": '2018-12-25', "value": 27.32 },
        { "time": '2018-12-26', "value": 25.17 },
        { "time": '2018-12-27', "value": 28.89 },
        { "time": '2018-12-28', "value": 25.46 },
        { "time": '2018-12-29', "value": 23.92 },
        { "time": '2018-12-30', "value": 22.68 },
        { "time": '2018-12-31', "value": 22.67 },
    ],
    "options": {}
}]

st.subheader("Line Chart with Watermark")

renderLightweightCharts([
    {
        "chart": chartOptions,
        "series": seriesLineChart
    }
], 'line')


Area Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesAreaChart = [{
    "type": 'Area',
    "data": [
        { "time": '2018-12-22', "value": 32.51 },
        { "time": '2018-12-23', "value": 31.11 },
        { "time": '2018-12-24', "value": 27.02 },
        { "time": '2018-12-25', "value": 27.32 },
        { "time": '2018-12-26', "value": 25.17 },
        { "time": '2018-12-27', "value": 28.89 },
        { "time": '2018-12-28', "value": 25.46 },
        { "time": '2018-12-29', "value": 23.92 },
        { "time": '2018-12-30', "value": 22.68 },
        { "time": '2018-12-31', "value": 22.67 },
    ],
    "options": {}
}]

st.subheader("Area Chart with Watermark")
renderLightweightCharts( [
    {
        "chart": chartOptions,
        "series": seriesAreaChart,
    }
], 'area')


Histogram Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesHistogramChart = [{
    "type": 'Histogram',
    "data": [
        { "value": 1, "time": 1642425322 },
        { "value": 8, "time": 1642511722 },
        { "value": 10, "time": 1642598122 },
        { "value": 20, "time": 1642684522 },
        { "value": 3, "time": 1642770922, "color": 'red' },
        { "value": 43, "time": 1642857322 },
        { "value": 41, "time": 1642943722, "color": 'red' },
        { "value": 43, "time": 1643030122 },
        { "value": 56, "time": 1643116522 },
        { "value": 46, "time": 1643202922, "color": 'red' }
    ],
    "options": { "color": '#26a69a' }
}]

st.subheader("Histogram Chart with Watermark")

renderLightweightCharts([
    {
        "chart": chartOptions,
        "series": seriesHistogramChart
    }
], 'histogram')


Bar Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesBarChart = [{
    "type": 'Bar',
    "data": [
        { "open": 10, "high": 10.63, "low": 9.49, "close": 9.55, "time": 1642427876 },
        { "open": 9.55, "high": 10.30, "low": 9.42, "close": 9.94, "time": 1642514276 },
        { "open": 9.94, "high": 10.17, "low": 9.92, "close": 9.78, "time": 1642600676 },
        { "open": 9.78, "high": 10.59, "low": 9.18, "close": 9.51, "time": 1642687076 },
        { "open": 9.51, "high": 10.46, "low": 9.10, "close": 10.17, "time": 1642773476 },
        { "open": 10.17, "high": 10.96, "low": 10.16, "close": 10.47, "time": 1642859876 },
        { "open": 10.47, "high": 11.39, "low": 10.40, "close": 10.81, "time": 1642946276 },
        { "open": 10.81, "high": 11.60, "low": 10.30, "close": 10.75, "time": 1643032676 },
        { "open": 10.75, "high": 11.60, "low": 10.49, "close": 10.93, "time": 1643119076 },
        { "open": 10.93, "high": 11.53, "low": 10.76, "close": 10.96, "time": 1643205476 }
    ],
    "options": {
        "upColor": '#26a69a',
        "downColor": '#ef5350'
    }
}]

st.subheader("Bar Chart with Watermark")
renderLightweightCharts([
    {
        "chart": chartOptions,
        "series": seriesBarChart
    }
], 'bar')


Candlestick Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesCandlestickChart = [{
    "type": 'Candlestick',
    "data": [
        { "open": 10, "high": 10.63, "low": 9.49, "close": 9.55, "time": 1642427876 },
        { "open": 9.55, "high": 10.30, "low": 9.42, "close": 9.94, "time": 1642514276 },
        { "open": 9.94, "high": 10.17, "low": 9.92, "close": 9.78, "time": 1642600676 },
        { "open": 9.78, "high": 10.59, "low": 9.18, "close": 9.51, "time": 1642687076 },
        { "open": 9.51, "high": 10.46, "low": 9.10, "close": 10.17, "time": 1642773476 },
        { "open": 10.17, "high": 10.96, "low": 10.16, "close": 10.47, "time": 1642859876 },
        { "open": 10.47, "high": 11.39, "low": 10.40, "close": 10.81, "time": 1642946276 },
        { "open": 10.81, "high": 11.60, "low": 10.30, "close": 10.75, "time": 1643032676 },
        { "open": 10.75, "high": 11.60, "low": 10.49, "close": 10.93, "time": 1643119076 },
        { "open": 10.93, "high": 11.53, "low": 10.76, "close": 10.96, "time": 1643205476 }
    ],
    "options": {
        "upColor": '#26a69a',
        "downColor": '#ef5350',
        "borderVisible": False,
        "wickUpColor": '#26a69a',
        "wickDownColor": '#ef5350'
    }
}]

st.subheader("Candlestick Chart with Watermark")

renderLightweightCharts([
    {
        "chart": chartOptions,
        "series": seriesCandlestickChart
    }
], 'candlestick')


Baseline Chart

import streamlit as st
from streamlit_lightweight_charts import renderLightweightCharts

chartOptions = {
    "layout": {
        "textColor": 'black',
        "background": {
            "type": 'solid',
            "color": 'white'
        }
    }
}

seriesBaselineChart = [{
    "type": 'Baseline',
    "data": [
        { "value": 1, "time": 1642425322 },
        { "value": 8, "time": 1642511722 },
        { "value": 10, "time": 1642598122 },
        { "value": 20, "time": 1642684522 },
        { "value": 3, "time": 1642770922 },
        { "value": 43, "time": 1642857322 },
        { "value": 41, "time": 1642943722 },
        { "value": 43, "time": 1643030122 },
        { "value": 56, "time": 1643116522 },
        { "value": 46, "time": 1643202922 }
    ],
    "options": {
        "baseValue": { "type": "price", "price": 25 },
        "topLineColor": 'rgba( 38, 166, 154, 1)',
        "topFillColor1": 'rgba( 38, 166, 154, 0.28)',
        "topFillColor2": 'rgba( 38, 166, 154, 0.05)',
        "bottomLineColor": 'rgba( 239, 83, 80, 1)',
        "bottomFillColor1": 'rgba( 239, 83, 80, 0.05)',
        "bottomFillColor2": 'rgba( 239, 83, 80, 0.28)'
    }
}]

st.subheader("Baseline Chart with Watermark")

renderLightweightCharts([
    {
        "chart": chartOptions,
        "series": seriesBaselineChart
    }
], 'baseline')

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc