🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Sign inDemoInstall
Socket

streamlit-pivottable

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

streamlit-pivottable

This Project is created at 2025 Jan 6th

0.2.1
PyPI
Maintainers
1

Streamlit Pivot Table

This Project is created at 2025 Jan 6th

import streamlit as st
from streamlit_pivottable import streamlit_pivottable
import pandas as pd
import numpy as np

# Set page configuration
st.set_page_config(layout='wide')

# Limit the number of rows
num_rows = 1000000

# Generate sample DataFrame for Pivot Table
df = pd.DataFrame({
    "Category": np.random.choice(
        ["Category A", "Category B", "Category C", "Category D",
         "Category E", "Category F", "Category G", "Category H",
         "Category I", "Category J"], size=num_rows),
    "Region": np.random.choice(
        ["North", "South", "East", "West", "Central", "Northeast",
         "Southeast", "Northwest", "Southwest", "International"], size=num_rows),
    "Priority": np.random.choice(
        ["Very Low", "Low", "Medium Low", "Medium", "Medium High",
         "High", "Very High", "Critical", "Non-Critical", "Undefined"], size=num_rows),
    "Product Type": np.random.choice(
        ["Product A", "Product B", "Product C", "Product D", "Product E",
         "Product F", "Product G", "Product H", "Product I", "Product J"], size=num_rows),
    "Quarter": np.random.choice(
        ["Q1", "Q2", "Q3", "Q4", "Q5", "Q6", "Q7", "Q8", "Q9", "Q10"], size=num_rows),
    "Source": np.random.choice(
        ["Online", "Offline", "In-Store", "Marketplace", "Subscription",
         "Direct Sales", "Wholesale", "Retail", "Auction", "Flash Sale"], size=num_rows),
    "Gender": np.random.choice(
        ["Male", "Female", "Other", "Prefer Not to Say", "Non-Binary",
         "Transgender", "Intersex", "Androgynous", "Genderqueer", "Agender"], size=num_rows),
    "Age Range": np.random.choice(
        ["18-24", "25-34", "35-44", "45-54", "55-64", "65-74",
         "75-84", "85-94", "95+", "Under 18"], size=num_rows),
    "Customer Type": np.random.choice(
        ["New Customer", "Returning Customer", "VIP", "Wholesale Buyer",
         "Gift Buyer", "Seasonal Buyer", "Frequent Shopper", "Rare Shopper",
         "Business Client", "Occasional Buyer"], size=num_rows),
    "Promotion": np.random.choice(
        ["Discounted", "Full Price", "Clearance", "Premium", "Subscription Plan",
         "Limited Offer", "Flash Sale", "Bundle Deal", "Gift Pack", "Exclusive"], size=num_rows),
})

df["Value"] = np.random.uniform(1000000, 999999999, size=num_rows).round(2)


sample_size = 50000  # Adjust this to improve performance
df_sample = df.sample(n=sample_size, random_state=42)
data_2d = [df_sample.columns.tolist()] + df_sample.values.tolist()


default_settings = {
   "rows":[],
   "cols":[],
   "aggregatorName":"Count",
   "vals":[],
   "rendererName":"Table",
   "rowOrder":"",
   "colOrder":"",
   "valueFilter":{},
   "hiddenAttributes":[],
   "hiddenFromAggregators":[],
   "hiddenFromDragDrop":[],
   "menuLimit":500,
   "unusedOrientationCutoff":85
}

# Display Streamlit component Pivot Table
with st.spinner("Loading Pivot Table..."):
    with st.container():
        pivot_table_settings = streamlit_pivottable(
            data=data_2d,
            default_settings=default_settings,
            height=40,
            use_container_width=True,
        )

# Display pivot table configuration
if pivot_table_settings:
    st.write("Pivot Table Configuration:")
    st.json(pivot_table_settings)


FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts