Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

supertriplets

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

supertriplets

Torch Multimodal Supervised Triplet Learning Toolbox

  • 1.0.6
  • PyPI
  • Socket score

Maintainers
1

GitHub - License PyPI - Downloads PyPI - Python Version PyPI - Package Version

SuperTriplets

SuperTriplets is a toolbox for supervised online hard triplet learning, currently supporting different kinds of data: text, image, and even text + image (multimodal).
It doesn't try to automate the training and evaluation loop for you. Instead, it provides useful PyTorch-based utilities you can couple to your existing code, making the process as easy as performing other everyday supervised learning tasks, such as classification and regression.
triplet learning iteration example

Installation and Supported Versions

SuperTriplets is available on PyPI:

$ pip install supertriplets

SuperTriplets officially supports Python 3.8+.

Quick Start

Training

Update your model weights with batch hard triplet losses over label balanced batches:

import torch

from supertriplets.dataset import OnlineTripletsDataset
from supertriplets.distance import EuclideanDistance
from supertriplets.loss import BatchHardTripletLoss
from supertriplets.sample import TextImageSample

# ... omitted code to load the pandas.Dataframe `train_df`

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'  # always use cuda if available

# SuperTriplets provides very basic `sample` classes to store and manipulate datapoints
train_examples = [
    TextImageSample(text=text, image_path=image_path, label=label)
    for text, image_path, label in zip(train_df['text'], train_df['image_path'], train_df['label'])
]

def my_sample_loading_func(text, image_path, label, *args, **kwargs):
    # ... implement your own preprocessing logic: e.g. tokenization, augmentations, tensor creation, etc
    # this usually contains similar logic to what you would use inside a torch.utils.data.Dataset `__get_item__` method
    # the only requirement is that it should at least have a few parameters named like its `sample` class attributes
    loaded_sample = {"text_input": prep_text, "image_input": prep_image, "label": prep_label}
    return loaded_sample

# subclass of torch.utils.data.IterableDataset
# it loops over examples to make sure each batch has the same number of
# samples per label and every sample is seen once per epoch
train_dataset = OnlineTripletsDataset(
    examples=train_examples,
    in_batch_num_samples_per_label=2,  # labels with less than this will be discarded
    batch_size=32,  # multiple of `in_batch_num_samples_per_label`
    sample_loading_func=my_sample_loading_func,
    sample_loading_kwargs={}  # you could add parameters to `my_sample_loading_func` and pass them here
)

# simple torch.utils.data.DataLoader, should match `batch_size` with `train_dataset`
train_dataloader = DataLoader(dataset=train_dataset, batch_size=32, num_workers=0, drop_last=True)

# SuperTriplets implement a variety of batch hard triplet losses and distances
criterion = BatchHardTripletLoss(distance=EuclideanDistance(squared=False), margin=5)

model = # init your torch model
optimizer = # init your torch optimizer
num_epochs = # define the number of training epochs

# basic training loop
for epoch in range(1, num_epochs + 1):
    for batch in train_dataloader:
        data = batch["samples"]  # batch preprocessing result of `train_dataset.sample_loading_func`
        labels = move_tensors_to_device(obj=data.pop("label"), device=device)  # helper to move tensors within lists and dicts recursively between devices
        inputs = move_tensors_to_device(obj=data, device=device)

        optimizer.zero_grad()

        embeddings = model(**inputs)
        loss = criterion(embeddings=embeddings, labels=labels)  # finds and uses the batch hardest triplets to update gradients

        loss.backward()
        optimizer.step()

Evaluation

Mine hard triplets with pretrained models to construct your static testing dataset:

import torch

from supertriplets.sample import TextImageSample
from supertriplets.encoder import PretrainedSampleEncoder
from supertriplets.evaluate import HardTripletsMiner
from supertriplets.dataset import StaticTripletsDataset

# ... omitted code to load the pandas.Dataframe `test_df`

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'  # always use cuda if available

# SuperTriplets provides very basic `sample` classes to store and manipulate datapoints
test_examples = [
    TextImageSample(text=text, image_path=image_path, label=label)
    for text, image_path, label in zip(test_df['text'], test_df['image_path'], test_df['label'])
]

# Leverage general purpose pretrained models per language and data format or bring your own `test_embeddings`
pretrained_encoder = PretrainedSampleEncoder(modality="text_english-image")
test_embeddings = pretrained_encoder.encode(examples=test_examples, device=device, batch_size=32)

# Index `test_examples` using `test_embeddings` and perform nearest neighbor search to sample hard positives and hard negatives
hard_triplet_miner = HardTripletsMiner(use_gpu_powered_index_if_available=True)
test_anchors, test_positives, test_negatives = hard_triplet_miner.mine(
    examples=test_examples, embeddings=test_embeddings, normalize_l2=True, sample_from_topk_hardest=10
)

def my_sample_loading_func(text, image_path, label, *args, **kwargs):
    # ... implement your own preprocessing logic: e.g. tokenization, augmentations, tensor creation, etc
    # this usually contains similar logic to what you would use inside a torch.utils.data.Dataset `__get_item__` method
    # the only requirement is that it should at least have a few parameters named like its `sample` class attributes
    loaded_sample = {"text_input": prep_text, "image_input": prep_image, "label": prep_label}
    return loaded_sample

# just another subclass of torch.utils.data.Dataset
test_dataset = StaticTripletsDataset(
    anchor_examples=test_anchor_examples,
    positive_examples=test_positive_examples,
    negative_examples=test_negative_examples,
    sample_loading_func=my_sample_loading_func,
    sample_loading_kwargs={}  # you could add parameters to `my_sample_loading_func` and pass them here
)

Easily create a good baseline with pretrained models and utilities to measure model accuracies on triplets using a diverse set of distance measurements:

from torch.utils.data import DataLoader
from tqdm import tqdm

from supertriplets.evaluate import TripletEmbeddingsEvaluator
from supertriplets.models import load_pretrained_model
from supertriplets.utils import move_tensors_to_device


model = load_pretrained_model(model_name="CLIPViTB32EnglishEncoder")  # see the list of pretrained models or bring your own model
model.to(device)
model.eval()

# very basic torch.utils.data.DataLoader to loop through the `test_dataset`
test_dataloader = DataLoader(dataset=test_dataset, batch_size=32, shuffle=False, num_workers=0, drop_last=False)

# bring your own logic to calculate embeddings
def get_triplet_embeddings(dataloader, model, device):
    model.eval()
    embeddings = {"anchors": [], "positives": [], "negatives": []}
    with torch.no_grad():
        for batch in tqdm(dataloader, total=len(dataloader)):
            # a batch contains the preprocessing result for anchors, positives and negatives samples
            for input_type in ["anchors", "positives", "negatives"]:
                inputs = {k: v for k, v in batch[input_type].items() if k != "label"}
                inputs = move_tensors_to_device(obj=inputs, device=device)  # helper to move tensors within lists and dicts recursively between devices
                batch_embeddings = model(**inputs).cpu()
                embeddings[input_type].append(batch_embeddings)
    embeddings = {k: torch.cat(v, dim=0).numpy() for k, v in embeddings.items()}
    return embeddings

# evaluate any model encodings accuracy on existing triplets
# accuracy is the percentage of triplets where dist(a, p) < dist(a, n)
triplet_embeddings_evaluator = TripletEmbeddingsEvaluator(
    calculate_by_cosine=True, calculate_by_manhattan=True, calculate_by_euclidean=True
)

test_triplet_embeddings = get_triplet_embeddings(dataloader=test_dataloader, model=model, device=device)

# `test_baseline_accuracies` is a dict of accuracies calculated using chosen distance measures
test_baseline_accuracies = triplet_embeddings_evaluator.evaluate(
    embeddings_anchors=test_triplet_embeddings["anchors"],
    embeddings_positives=test_triplet_embeddings["positives"],
    embeddings_negatives=test_triplet_embeddings["negatives"],
)
# ... continue using `triplet_embeddings_evaluator` within your evaluation loops

Local Development

Make sure you have python3, python3-venv and make installed.
Create a virtual environment with an editable installation of SuperTriplets and development specific dependencies by running:

$ make install

Activate .venv:

$ source .venv/bin/activate

Now you can make changes and test them with pytest.
Testing without a GPU:

$ python -m pytest -k "not test_tinymmimdb_convergence"

With a GPU:

$ python -m pytest

Changelog

See CHANGELOG.md for news on all SuperTriplets versions.

License

See LICENSE for the current license.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc