
Security News
NVD Quietly Sweeps 100K+ CVEs Into a “Deferred” Black Hole
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
Badges | |
---|---|
Documentation | |
Testing & coverage | |
Packages | |
Paper |
Symfem is a symbolic finite element definition library, that can be used to symbolically evaluate the basis functions of a finite element space. Symfem can:
You can find details of recent changes to Symfem in the changelog.
Symfem can be installed by downloading the GitHub repo and running:
pip3 install .
You may also use -e
to install in editable mode:
pip3 install -e .
The latest release of Symfem can be installed by running:
pip3 install symfem
The latest release of Symfem can be installed by running:
conda install -c conda-forge symfem
To run the Symfem unit tests, clone the repository and run:
python3 -m pytest test/
You may instead like to run the following, as this will skip the slowest tests.
python3 -m pytest test/ --speed fast
Finite elements can be created in Symfem using the symfem.create_element()
function. For example, some elements are created in the following snippet:
import symfem
lagrange = symfem.create_element("triangle", "Lagrange", 1)
rt = symfem.create_element("tetrahedron", "Raviart-Thomas", 2)
nedelec = symfem.create_element("triangle", "N2curl", 1)
qcurl = symfem.create_element("quadrilateral", "Qcurl", 2)
The basis functions of an element can be obtained by calling get_basis_functions()
:
lagrange = symfem.create_element("triangle", "Lagrange", 1)
print(lagrange.get_basis_functions())
[-x - y + 1, x, y]
Each basis function will be a Sympy symbolic expression.
Derivative of these basis functions can be computed using the functions in
symfem.functions
.
The function map_to_cell
can be used to map the basis functions of a finite element
to a non-default cell:
lagrange = symfem.create_element("triangle", "Lagrange", 1)
print(lagrange.get_basis_functions())
print(lagrange.map_to_cell([(0,0), (2, 0), (2, 1)]))
[-x - y + 1, x, y]
[1 - x/2, x/2 - y, y]
More detailed documentation of the latest release version of Symfem can be found on
Read the Docs. A series of example uses
of Symfem can be found in the demo
folder or viewed on
Read the Docs.
Details of the definition of each element can be found on DefElement alongside Symfem snippets for creating the element.
You can ask questions about using Symfem by using GitHub Discussions. Bugs can be reported using the GitHub issue tracker.
If you find a bug in Symfem, please report it on the issue tracker.
If you want to suggest a new feature or an improvement of a current feature, you can submit this on the issue tracker.
If you want to add a new element to Symfem, take a look at the Adding an element guide.
If you want to directly submit code to Symfem, you can do this by forking the Symfem repo, then submitting a pull request. If you want to contribute, but are unsure where to start, have a look at the issues labelled "good first issue".
On opening a pull request, unit tests and flake8 style checks will run. You can click on these in the pull request to see where (if anywhere) there are errors in your code.
We expect all our contributors to follow the Contributor Covenant. Any unacceptable behaviour can be reported to Matthew (symfem@mscroggs.co.uk).
The reference interval has vertices (0,) and (1,). Its sub-entities are numbered as follows.
The reference triangle has vertices (0, 0), (1, 0), and (0, 1). Its sub-entities are numbered as follows.
The reference quadrilateral has vertices (0, 0), (1, 0), (0, 1), and (1, 1). Its sub-entities are numbered as follows.
The reference tetrahedron has vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Its sub-entities are numbered as follows.
The reference hexahedron has vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), and (1, 1, 1). Its sub-entities are numbered as follows.
The reference prism has vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), and (0, 1, 1). Its sub-entities are numbered as follows.
The reference pyramid has vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), and (0, 0, 1). Its sub-entities are numbered as follows.
The reference dual polygon (hexagon example shown) has vertices (1, 0), (3/4, sqrt(3)/4), (1/2, sqrt(3)/2), (0, sqrt(3)/2), (-1/2, sqrt(3)/2), (-3/4, sqrt(3)/4), (-1, 0), (-3/4, -sqrt(3)/4), (-1/2, -sqrt(3)/2), (0, -sqrt(3)/2), (1/2, -sqrt(3)/2), and (3/4, -sqrt(3)/4). Its sub-entities are numbered as follows.
FAQs
a symbolic finite element definition library
We found that symfem demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
Research
Security News
Lazarus-linked threat actors expand their npm malware campaign with new RAT loaders, hex obfuscation, and over 5,600 downloads across 11 packages.
Security News
Safari 18.4 adds support for Iterator Helpers and two other TC39 JavaScript features, bringing full cross-browser coverage to key parts of the ECMAScript spec.