
Security News
Inside Lodash’s Security Reset and Maintenance Reboot
Lodash 4.17.23 marks a security reset, with maintainers rebuilding governance and infrastructure to support long-term, sustainable maintenance.
table2html
Advanced tools
A Python package that converts table images into HTML format using Object Detection model and OCR.
pip install table2html
from table2html import Table2HTML
table_config = {
"model_path": r"table2html\models\det_table_v1.pt",
"confidence_threshold": 0.25,
"iou_threshold": 0.7,
}
row_config = {
"model_path": r"table2html\models\det_row_v0.pt",
"confidence_threshold": 0.25,
"iou_threshold": 0.7,
"task": "detect",
}
column_config = {
"model_path": r"table2html\models\det_col_v0.pt",
"confidence_threshold": 0.25,
"iou_threshold": 0.7,
"task": "detect",
}
table2html = Table2HTML(table_config, row_config, column_config)
image = cv2.imread(r"table2html\images\sample.jpg")
detection_data = table2html.TableDetect(image)
# Output: [{"table_bbox": Tuple[int]}]
# Visualize table detection (first table)
from table2html.source import visualize_boxes
cv2.imwrite(
"table_detection.jpg",
visualize_boxes(
image,
[detection_data[0]["table_bbox"]],
color=(0, 0, 255),
thickness=1
)
)
Table detection result:

data = table2html.StructureDetect(image)
# Output: {
# "cells": List[Dict],
# "num_rows": int,
# "num_cols": int,
# "html": str
# }
# Visualize structure detection
from table2html.source import visualize_boxes
cv2.imwrite(
"structure_detection.jpg",
visualize_boxes(
image,
[cell['box'] for cell in data['cells']],
color=(0, 255, 0),
thickness=1
)
)
# Write HTML output
with open('table.html', 'w') as f:
f.write(data["html"])
Structure detection result:

HTML output: extracted html.
Note: The cell coordinates are relative to the cropped table image.
table_crop_padding = 15
detection_data = table2html(image, table_crop_padding)
# Output: [{
# "table_bbox": Tuple[int],
# "cells": List[Dict],
# "num_rows": int,
# "num_cols": int,
# "html": str
# }]
for i, data in enumerate(detection_data):
table_image = crop_image(image, data["table_bbox"], table_crop_padding)
cv2.imwrite(
"table_detection.jpg",
visualize_boxes(
image,
[data["table_bbox"]],
color=(0, 0, 255),
thickness=1
)
)
cv2.imwrite(
"structure_detection.jpg",
visualize_boxes(
table_image,
[cell['box'] for cell in data['cells']],
color=(0, 255, 0),
thickness=1
)
)
with open(f"table_{i}.html", "w") as f:
f.write(data["html"])
image: numpy.ndarray (OpenCV/cv2 image format)A list of extracted tables in structured:
table_bbox: Tuple[int] - Bounding box coordinates (x1, y1, x2, y2) of the tablecells: List[Dict] - List of cell dictionaries, where each dictionary contains:
row: int - Row indexcolumn: int - Column indexbox: Tuple[int] - Bounding box coordinates (x1, y1, x2, y2)text: str - Cell text contentnum_rows: int - Number of rows in the tablenum_cols: int - Number of columns in the tablehtml: str - HTML representation of the tableThis project is licensed under the Apache License 2.0. See the LICENSE file for details.
FAQs
Detect and convert table image to html table
We found that table2html demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
Lodash 4.17.23 marks a security reset, with maintainers rebuilding governance and infrastructure to support long-term, sustainable maintenance.

Security News
n8n led JavaScript Rising Stars 2025 by a wide margin, with workflow platforms seeing the largest growth across categories.

Security News
The U.S. government is rolling back software supply chain mandates, shifting from mandatory SBOMs and attestations to a risk-based approach.