
Security News
Open Source CAI Framework Handles Pen Testing Tasks up to 3,600× Faster Than Humans
CAI is a new open source AI framework that automates penetration testing tasks like scanning and exploitation up to 3,600× faster than humans.
Compatibility: |
|
Availability: |
|
Status: |
|
This library is a collection of utility functions that are used in PyTorch (re-)implementations of projects from the Grimme group. In particular, the tad-mctc library provides:
autograd functions (Jacobian, Hessian)
atomic data (radii, EN, example molecules, ...)
batch utility (packing, masks, ...)
conversion functions (numpy, atomic symbols/numbers, ...)
coordination numbers (DFT-D3, DFT-D4, EEQ)
io (reading/writing coordinate files)
molecular properties (bond lengths/orders/angles, moment of inertia, ...)
safeops (autograd-safe implementations of common functions)
typing (base class for tensor-like behavior of arbitrary classes)
units
The name is inspired by the Fortran pendant "modular computation tool chain library" (mctc-lib).
If you use this software, please cite the following publication
tad-mctc can easily be installed with pip
.
pip install tad-mctc
tad-mctc is also available from conda
.
conda install tad-mctc
This project is hosted on GitHub at tad-mctc/tad-mctc. Obtain the source by cloning the repository with
git clone https://github.com/tad-mctc/tad-mctc
cd tad-mctc
We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.
mamba env create -n torch -f environment.yaml
mamba activate torch
Install this project with pip
in the environment
pip install .
The following dependencies are required
PyTorch \ Python | 3.8 | 3.9 | 3.10 | 3.11 | 3.12 |
---|---|---|---|---|---|
1.11.0 | :white_check_mark: | :white_check_mark: | :x: | :x: | :x: |
1.12.1 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: |
1.13.1 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: |
2.0.1 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: |
2.1.2 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: |
2.2.2 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
2.3.1 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
2.4.1 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
2.5.1 | :x: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
2.6.0 | :x: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
2.7.1 | :x: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
Note that only the latest bug fix version is listed, but all preceding bug fix minor versions are supported. For example, although only version 2.2.2 is listed, version 2.2.0 and 2.2.1 are also supported.
On macOS and Windows, PyTorch<2.0.0 does only support Python<3.11.
For development, additionally install the following tools in your environment.
mamba install black covdefaults mypy pre-commit pylint pytest pytest-cov pytest-xdist tox
pip install pytest-random-order
With pip, add the option -e
for installing in development mode, and add [dev]
for the development dependencies
pip install -e .[dev]
The pre-commit hooks are initialized by running the following command in the root of the repository.
pre-commit install
For testing all Python environments, simply run tox
.
tox
Note that this randomizes the order of tests but skips "large" tests. To modify this behavior, tox
has to skip the optional posargs.
tox -- test
The following example shows how to calculate the coordination number used in the EEQ model for a single structure.
import torch
import tad_mctc as mctc
numbers = mctc.convert.symbol_to_number(symbols="C C C C N C S H H H H H".split())
# coordinates in Bohr
positions = torch.tensor(
[
[-2.56745685564671, -0.02509985979910, 0.00000000000000],
[-1.39177582455797, +2.27696188880014, 0.00000000000000],
[+1.27784995624894, +2.45107479759386, 0.00000000000000],
[+2.62801937615793, +0.25927727028120, 0.00000000000000],
[+1.41097033661123, -1.99890996077412, 0.00000000000000],
[-1.17186102298849, -2.34220576284180, 0.00000000000000],
[-2.39505990368378, -5.22635838332362, 0.00000000000000],
[+2.41961980455457, -3.62158019253045, 0.00000000000000],
[-2.51744374846065, +3.98181713686746, 0.00000000000000],
[+2.24269048384775, +4.24389473203647, 0.00000000000000],
[+4.66488984573956, +0.17907568006409, 0.00000000000000],
[-4.60044244782237, -0.17794734637413, 0.00000000000000],
]
)
# calculate EEQ coordination number
cn = mctc.ncoord.cn_eeq(numbers, positions)
torch.set_printoptions(precision=10)
print(cn)
# tensor([3.0519218445, 3.0177774429, 3.0132560730, 3.0197706223,
# 3.0779352188, 3.0095663071, 1.0991339684, 0.9968624115,
# 0.9943327904, 0.9947233200, 0.9945874214, 0.9945726395])
The next example shows the calculation of the coordination number used in DFT-D4 for a batch of structures.
import torch
import tad_mctc as mctc
# S22 system 4: formamide dimer
numbers = mctc.batch.pack((
mctc.convert.symbol_to_number("C C N N H H H H H H O O".split()),
mctc.convert.symbol_to_number("C O N H H H".split()),
))
# coordinates in Bohr
positions = mctc.batch.pack((
torch.tensor([
[-3.81469488143921, +0.09993441402912, 0.00000000000000],
[+3.81469488143921, -0.09993441402912, 0.00000000000000],
[-2.66030049324036, -2.15898251533508, 0.00000000000000],
[+2.66030049324036, +2.15898251533508, 0.00000000000000],
[-0.73178529739380, -2.28237795829773, 0.00000000000000],
[-5.89039325714111, -0.02589114569128, 0.00000000000000],
[-3.71254944801331, -3.73605775833130, 0.00000000000000],
[+3.71254944801331, +3.73605775833130, 0.00000000000000],
[+0.73178529739380, +2.28237795829773, 0.00000000000000],
[+5.89039325714111, +0.02589114569128, 0.00000000000000],
[-2.74426102638245, +2.16115570068359, 0.00000000000000],
[+2.74426102638245, -2.16115570068359, 0.00000000000000],
]),
torch.tensor([
[-0.55569743203406, +1.09030425468557, 0.00000000000000],
[+0.51473634678469, +3.15152550263611, 0.00000000000000],
[+0.59869690244446, -1.16861263789477, 0.00000000000000],
[-0.45355203669134, -2.74568780438064, 0.00000000000000],
[+2.52721209544999, -1.29200800956867, 0.00000000000000],
[-2.63139587595376, +0.96447869452240, 0.00000000000000],
]),
))
# calculate coordination number
cn = mctc.ncoord.cn_d4(numbers, positions)
torch.set_printoptions(precision=10)
print(cn)
# tensor([[2.6886456013, 2.6886456013, 2.6314170361, 2.6314167976,
# 0.8594539165, 0.9231414795, 0.8605306745, 0.8605306745,
# 0.8594539165, 0.9231414795, 0.8568341732, 0.8568341732],
# [2.6886456013, 0.8568335176, 2.6314167976, 0.8605306745,
# 0.8594532013, 0.9231414795, 0.0000000000, 0.0000000000,
# 0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000]])
This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.
This project is licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
FAQs
Torch Autodiff Utility
We found that tad-mctc demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
CAI is a new open source AI framework that automates penetration testing tasks like scanning and exploitation up to 3,600× faster than humans.
Security News
Deno 2.4 brings back bundling, improves dependency updates and telemetry, and makes the runtime more practical for real-world JavaScript projects.
Security News
CVEForecast.org uses machine learning to project a record-breaking surge in vulnerability disclosures in 2025.