You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

tanh-sinh

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

tanh-sinh

tanh-sinh quadrature for Python

0.3.17
pipPyPI
Maintainers
1

logo

PyPi Version PyPI pyversions GitHub stars PyPi downloads

Discord

The rather modern tanh-sinh quadrature is different from classical Gaussian integration methods in that it doesn't integrate any function exactly, not even polynomials of low degree. Its tremendous usefulness rather comes from the fact that a wide variety of functions, even seemingly difficult ones with (integrable) singularities, can be integrated with arbitrary precision.

Install with

pip install tanh-sinh

and use it like

import tanh_sinh
import numpy as np

val, error_estimate = tanh_sinh.integrate(
    lambda x: np.exp(x) * np.cos(x),
    # Optional: Specify the function with its first and second derivative for
    #           better error estimation
    # (
    #   lambda x: np.exp(x) * np.cos(x),
    #   lambda x: np.exp(x) * (np.cos(x) - np.sin(x)),
    #   lambda x: -2 * np.exp(x) * np.sin(x),
    # )
    0,
    np.pi / 2,
    1.0e-14,
)

If you want more digits, use mpmath for arbitrary precision arithmetic:

import tanh_sinh
from mpmath import mp
import sympy

mp.dps = 50

val, error_estimate = tanh_sinh.integrate(
    lambda x: mp.exp(x) * sympy.cos(x),
    0,
    mp.pi / 2,
    1.0e-50,  # !
    mode="mpmath",
)

If the function has a singularity at a boundary, it needs to be shifted such that the singularity is at 0. (This is to avoid round-off errors for points that are very close to the singularity.) If there are singularities at both ends, the function can be shifted both ways and be handed off to integrate_lr; For example, for the function 1 / sqrt(1 - x**2), this gives

import numpy
import tanh_sinh

# def f(x):
#    return 1 / numpy.sqrt(1 - x ** 2)

val, error_estimate = tanh_sinh.integrate_lr(
    lambda x: 1 / numpy.sqrt(-(x**2) + 2 * x),  # = 1 / sqrt(1 - (x-1)**2)
    lambda x: 1 / numpy.sqrt(-(x**2) + 2 * x),  # = 1 / sqrt(1 - (-(x-1))**2)
    2,  # length of the interval
    1.0e-10,
)
print(numpy.pi)
print(val)
3.141592653589793
3.1415926533203944

Relevant publications

Keywords

mathematics

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts