tdigest
Efficient percentile estimation of streaming or distributed data
This is a Python implementation of Ted Dunning's t-digest data structure. The t-digest data structure is designed around computing accurate estimates from either streaming data, or distributed data. These estimates are percentiles, quantiles, trimmed means, etc. Two t-digests can be added, making the data structure ideal for map-reduce settings, and can be serialized into much less than 10kB (instead of storing the entire list of data).
See a blog post about it here: Percentile and Quantile Estimation of Big Data: The t-Digest
Installation
tdigest is compatible with both Python 2 and Python 3.
pip install tdigest
Usage
Update the digest sequentially
from tdigest import TDigest
from numpy.random import random
digest = TDigest()
for x in range(5000):
digest.update(random())
print(digest.percentile(15)) # about 0.15, as 0.15 is the 15th percentile of the Uniform(0,1) distribution
Update the digest in batches
another_digest = TDigest()
another_digest.batch_update(random(5000))
print(another_digest.percentile(15))
Sum two digests to create a new digest
sum_digest = digest + another_digest
sum_digest.percentile(30) # about 0.3
To dict or serializing a digest with JSON
You can use the to_dict() method to turn a TDigest object into a standard Python dictionary.
digest = TDigest()
digest.update(1)
digest.update(2)
digest.update(3)
print(digest.to_dict())
Or you can get only a list of Centroids with centroids_to_list()
.
digest.centroids_to_list()
Similarly, you can restore a Python dict of digest values with update_from_dict()
. Centroids are merged with any existing ones in the digest.
For example, make a fresh digest and restore values from a python dictionary.
digest = TDigest()
digest.update_from_dict({'K': 25, 'delta': 0.01, 'centroids': [{'c': 1.0, 'm': 1.0}, {'c': 1.0, 'm': 2.0}, {'c': 1.0, 'm': 3.0}]})
K and delta values are optional, or you can provide only a list of centroids with update_centroids_from_list()
.
digest = TDigest()
digest.update_centroids([{'c': 1.0, 'm': 1.0}, {'c': 1.0, 'm': 2.0}, {'c': 1.0, 'm': 3.0}])
If you want to serialize with other tools like JSON, you can first convert to_dict().
json.dumps(digest.to_dict())
Alternatively, make a custom encoder function to provide as default to the standard json module.
def encoder(digest_obj):
return digest_obj.to_dict()
Then pass the encoder function as the default parameter.
json.dumps(digest, default=encoder)
API
TDigest.
update(x, w=1)
: update the tdigest with value x
and weight w
.batch_update(x, w=1)
: update the tdigest with values in array x
and weight w
.compress()
: perform a compression on the underlying data structure that will shrink the memory footprint of it, without hurting accuracy. Good to perform after adding many values.percentile(p)
: return the p
th percentile. Example: p=50
is the median.cdf(x)
: return the CDF the value x
is at.trimmed_mean(p1, p2)
: return the mean of data set without the values below and above the p1
and p2
percentile respectively.to_dict()
: return a Python dictionary of the TDigest and internal Centroid values.update_from_dict(dict_values)
: update from serialized dictionary values into the TDigest object.centroids_to_list()
: return a Python list of the TDigest object's internal Centroid values.update_centroids_from_list(list_values)
: update Centroids from a python list.