Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

tesserocr

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

tesserocr

A simple, Pillow-friendly, Python wrapper around tesseract-ocr API using Cython

  • 2.7.1
  • PyPI
  • Socket score

Maintainers
1

========= tesserocr

A simple, |Pillow|_-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR).

.. image:: https://github.com/sirfz/tesserocr/actions/workflows/build.yml/badge.svg :target: https://github.com/sirfz/tesserocr/actions/workflows/build.yml :alt: Github Actions build status

.. image:: https://img.shields.io/pypi/v/tesserocr.svg?maxAge=2592000 :target: https://pypi.python.org/pypi/tesserocr :alt: Latest version on PyPi

.. image:: https://img.shields.io/pypi/pyversions/tesserocr.svg?maxAge=2592000 :alt: Supported python versions

tesserocr integrates directly with Tesseract's C++ API using Cython which allows for a simple Pythonic and easy-to-read source code. It enables real concurrent execution when used with Python's threading module by releasing the GIL while processing an image in tesseract.

tesserocr is designed to be |Pillow|_-friendly but can also be used with image files instead.

.. |Pillow| replace:: Pillow .. _Pillow: http://python-pillow.github.io/

Requirements

Requires libtesseract (>=3.04) and libleptonica (>=1.71).

On Debian/Ubuntu:

::

$ apt-get install tesseract-ocr libtesseract-dev libleptonica-dev pkg-config

You may need to manually compile tesseract_ for a more recent version. Note that you may need to update your LD_LIBRARY_PATH environment variable to point to the right library versions in case you have multiple tesseract/leptonica installations.

|Cython|_ (>=0.23) is required for building and optionally |Pillow|_ to support PIL.Image objects.

.. _manually compile tesseract: https://github.com/tesseract-ocr/tesseract/wiki/Compiling .. |Cython| replace:: Cython .. _Cython: http://cython.org/

Installation

Linux and BSD/MacOS

::

$ pip install tesserocr

The setup script attempts to detect the include/library dirs (via |pkg-config|_ if available) but you can override them with your own parameters, e.g.:

::

$ CPPFLAGS=-I/usr/local/include pip install tesserocr

or

::

$ python setup.py build_ext -I/usr/local/include

Tested on Linux and BSD/MacOS

.. |pkg-config| replace:: pkg-config .. _pkg-config: https://pkgconfig.freedesktop.org/

Windows

The proposed downloads consist of stand-alone packages containing all the Windows libraries needed for execution. This means that no additional installation of tesseract is required on your system.

The recommended method of installation is via Conda as described below.

Conda


You can use the `simonflueckiger <https://anaconda.org/simonflueckiger/tesserocr>`_ channel to install from Conda:

::

    > conda install -c simonflueckiger tesserocr

Or alternatively the `conda-forge <https://anaconda.org/conda-forge/tesserocr>`_ channel:

::

    > conda install -c conda-forge tesserocr

pip
```

Download the wheel file corresponding to your Windows platform and Python installation from `simonflueckiger/tesserocr-windows_build/releases <https://github.com/simonflueckiger/tesserocr-windows_build/releases>`_ and install them via:

::

    > pip install <package_name>.whl

Build from source

If you need Windows tessocr package and your Python version is not supported by above mentioned project, you can try to follow step by step instructions for Windows 64bit in Windows.build.md_.

.. _Windows.build.md: Windows.build.md

tessdata

You may need to point to the tessdata path if it cannot be detected automatically. This can be done by setting the TESSDATA_PREFIX environment variable or by passing the path to PyTessBaseAPI (e.g.: PyTessBaseAPI(path='/usr/share/tessdata')). The path should contain .traineddata files which can be found at https://github.com/tesseract-ocr/tessdata.

Make sure you have the correct version of traineddata for your tesseract --version.

You can list the current supported languages on your system using the get_languages function:

.. code:: python

from tesserocr import get_languages

print(get_languages('/usr/share/tessdata'))  # or any other path that applies to your system

Usage

Initialize and re-use the tesseract API instance to score multiple images:

.. code:: python

from tesserocr import PyTessBaseAPI

images = ['sample.jpg', 'sample2.jpg', 'sample3.jpg']

with PyTessBaseAPI() as api:
    for img in images:
        api.SetImageFile(img)
        print(api.GetUTF8Text())
        print(api.AllWordConfidences())
# api is automatically finalized when used in a with-statement (context manager).
# otherwise api.End() should be explicitly called when it's no longer needed.

PyTessBaseAPI exposes several tesseract API methods. Make sure you read their docstrings for more info.

Basic example using available helper functions:

.. code:: python

import tesserocr
from PIL import Image

print(tesserocr.tesseract_version())  # print tesseract-ocr version
print(tesserocr.get_languages())  # prints tessdata path and list of available languages

image = Image.open('sample.jpg')
print(tesserocr.image_to_text(image))  # print ocr text from image
# or
print(tesserocr.file_to_text('sample.jpg'))

image_to_text and file_to_text can be used with threading to concurrently process multiple images which is highly efficient.

Advanced API Examples

GetComponentImages example:


.. code:: python

    from PIL import Image
    from tesserocr import PyTessBaseAPI, RIL

    image = Image.open('/usr/src/tesseract/testing/phototest.tif')
    with PyTessBaseAPI() as api:
        api.SetImage(image)
        boxes = api.GetComponentImages(RIL.TEXTLINE, True)
        print('Found {} textline image components.'.format(len(boxes)))
        for i, (im, box, _, _) in enumerate(boxes):
            # im is a PIL image object
            # box is a dict with x, y, w and h keys
            api.SetRectangle(box['x'], box['y'], box['w'], box['h'])
            ocrResult = api.GetUTF8Text()
            conf = api.MeanTextConf()
            print(u"Box[{0}]: x={x}, y={y}, w={w}, h={h}, "
                  "confidence: {1}, text: {2}".format(i, conf, ocrResult, **box))

Orientation and script detection (OSD):

.. code:: python

from PIL import Image
from tesserocr import PyTessBaseAPI, PSM

with PyTessBaseAPI(psm=PSM.AUTO_OSD) as api:
    image = Image.open("/usr/src/tesseract/testing/eurotext.tif")
    api.SetImage(image)
    api.Recognize()

    it = api.AnalyseLayout()
    orientation, direction, order, deskew_angle = it.Orientation()
    print("Orientation: {:d}".format(orientation))
    print("WritingDirection: {:d}".format(direction))
    print("TextlineOrder: {:d}".format(order))
    print("Deskew angle: {:.4f}".format(deskew_angle))

or more simply with OSD_ONLY page segmentation mode:

.. code:: python

from tesserocr import PyTessBaseAPI, PSM

with PyTessBaseAPI(psm=PSM.OSD_ONLY) as api:
    api.SetImageFile("/usr/src/tesseract/testing/eurotext.tif")

    os = api.DetectOS()
    print("Orientation: {orientation}\nOrientation confidence: {oconfidence}\n"
          "Script: {script}\nScript confidence: {sconfidence}".format(**os))

more human-readable info with tesseract 4+ (demonstrates LSTM engine usage):

.. code:: python

from tesserocr import PyTessBaseAPI, PSM, OEM

with PyTessBaseAPI(psm=PSM.OSD_ONLY, oem=OEM.LSTM_ONLY) as api:
    api.SetImageFile("/usr/src/tesseract/testing/eurotext.tif")

    os = api.DetectOrientationScript()
    print("Orientation: {orient_deg}\nOrientation confidence: {orient_conf}\n"
          "Script: {script_name}\nScript confidence: {script_conf}".format(**os))

Iterator over the classifier choices for a single symbol:


.. code:: python

    from __future__ import print_function

    from tesserocr import PyTessBaseAPI, RIL, iterate_level

    with PyTessBaseAPI() as api:
        api.SetImageFile('/usr/src/tesseract/testing/phototest.tif')
        api.SetVariable("save_blob_choices", "T")
        api.SetRectangle(37, 228, 548, 31)
        api.Recognize()

        ri = api.GetIterator()
        level = RIL.SYMBOL
        for r in iterate_level(ri, level):
            symbol = r.GetUTF8Text(level)  # r == ri
            conf = r.Confidence(level)
            if symbol:
                print(u'symbol {}, conf: {}'.format(symbol, conf), end='')
            indent = False
            ci = r.GetChoiceIterator()
            for c in ci:
                if indent:
                    print('\t\t ', end='')
                print('\t- ', end='')
                choice = c.GetUTF8Text()  # c == ci
                print(u'{} conf: {}'.format(choice, c.Confidence()))
                indent = True
            print('---------------------------------------------')

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc