
Security News
npm Adopts OIDC for Trusted Publishing in CI/CD Workflows
npm now supports Trusted Publishing with OIDC, enabling secure package publishing directly from CI/CD workflows without relying on long-lived tokens.
To contribute, check out the instructions here.
Polyscope is a C++/Python viewer and user interface for 3D data such as meshes and point clouds. It allows you to register your data and quickly generate informative and beautiful visualizations, either programmatically or via a dynamic GUI. Polyscope is designed to be lightweight---it does not "take ownership" over your entire program, and it is easy to integrate with existing codebases and popular libraries. The lofty objective of Polyscope is to offer a useful visual interface to your data via a single line of code.
Polyscope uses a paradigm of structures and quantities. A structure is a geometric object in the scene, such as a surface mesh or point cloud. A quantity is data associated with a structure, such as a scalar function or a vector field.
When any of these structures and quantities are registered, Polyscope displays them in an interactive 3D scene, handling boilerplate concerns such as toggling visibility, color-mapping data and adjusting maps, "picking" to click in the scene and query numerical quantities, etc.
C++:
#include "polyscope/polyscope.h"
#include "polyscope/surface_mesh.h"
// Initialize polyscope
polyscope::init();
// Register a point cloud
// `points` is a Nx3 array-like container of points
polyscope::registerPointCloud("my points", points)
// Register a surface mesh structure
// `meshVerts` is a Vx3 array-like container of vertex positions
// `meshFaces` is a Fx3 array-like container of face indices
polyscope::registerSurfaceMesh("my mesh", meshVerts, meshFaces);
// Add a scalar and a vector function defined on the mesh
// `scalarQuantity` is a length V array-like container of values
// `vectorQuantity` is an Fx3 array-like container of vectors per face
polyscope::getSurfaceMesh("my mesh")->addVertexScalarQuantity("my_scalar", scalarQuantity);
polyscope::getSurfaceMesh("my mesh")->addFaceVectorQuantity("my_vector", vectorQuantity);
// View the point cloud and mesh we just registered in the 3D UI
polyscope::show();
Python:
import polyscope as ps
# Initialize polyscope
ps.init()
### Register a point cloud
# `my_points` is a Nx3 numpy array
ps.register_point_cloud("my points", my_points)
### Register a mesh
# `verts` is a Nx3 numpy array of vertex positions
# `faces` is a Fx3 array of indices, or a nested list
ps.register_surface_mesh("my mesh", verts, faces, smooth_shade=True)
# Add a scalar function and a vector function defined on the mesh
# vertex_scalar is a length V numpy array of values
# face_vectors is an Fx3 array of vectors per face
ps.get_surface_mesh("my mesh").add_scalar_quantity("my_scalar",
vertex_scalar, defined_on='vertices', cmap='blues')
ps.get_surface_mesh("my mesh").add_vector_quantity("my_vector",
face_vectors, defined_on='faces', color=(0.2, 0.5, 0.5))
# View the point cloud and mesh we just registered in the 3D UI
ps.show()
Polyscope is designed to make your life easier. It is simple to build, and fewer than 10 lines of code should be sufficient to start visualizing. In C++, some template magic means Polyscope can probably accept the data types you're already using!
Author: Nicholas Sharp
If Polyscope contributes to an academic publication, cite it as:
@misc{polyscope,
title = {Polyscope},
author = {Nicholas Sharp and others},
note = {www.polyscope.run},
year = {2019}
}
Development of this software was funded in part by NSF Award 1717320, an NSF graduate research fellowship, and gifts from Adobe Research and Autodesk, Inc.
FAQs
Polyscope: A viewer and user interface for 3D data.
We found that tetrapolyscope demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
npm now supports Trusted Publishing with OIDC, enabling secure package publishing directly from CI/CD workflows without relying on long-lived tokens.
Research
/Security News
A RubyGems malware campaign used 60 malicious packages posing as automation tools to steal credentials from social media and marketing tool users.
Security News
The CNA Scorecard ranks CVE issuers by data completeness, revealing major gaps in patch info and software identifiers across thousands of vulnerabilities.