Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

threadingq

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

threadingq

Threading Queue

  • 0.0.1
  • Source
  • PyPI
  • Socket score

Maintainers
1

threadingq package

This library allows you to do your tasks in multiple threads easily.

This is helpful when you have a lot of data to process.

Assume that you have a large list of items to process. You need to write a producer to put items in the queue one by one.

Workers will get data from the queue and then process it. Putting data into a queue should be quicker than processing it (worker).

Installation

pip install threadingq

Usage

  1. Import library
from threadingq import ThreadingQueue
  1. Create a worker
  • Create a worker function that gets the data as the first parameter
  • Worker can be a normal function or a coroutine function
  • Worker will be called in child threads
def worker(data):
    pass
async def worker2(data):
    pass
  1. Set threading for a producer Apply the threading for a producer:
  • a. Set the number of threads and the worker

  • b. Put data into the queue

  • You can also use ThreadingQueue as a context manager

def producer():
    # Start the queue
    with ThreadingQueue(40, worker) as tq:
        ...
        tq.put(data)
  • You can also use it async
async def producer():
    # Start the queue
    async with ThreadingQueue(40, worker) as tq:
        ...
        await tq.put(data)
  1. Run producer
  • Async producer:
await producer()

or

asyncio.run(producer())

Note

  1. You can add more keyword params for all workers running in threads via worker_params
  2. Apart from the number of threads and the worker, you can set log_dir to store logs to file
  3. and worker_params_builder to generate parameters for each worker.
  4. on_thread_close is an optional param as a function that is helpful when you need to close the database connection when a thread done
  5. Apart from all the above params, the rest of the keyword params will be passed to the worker.
  • If you change the lib from the 0.0.14 version to the newer, please update the code to fix the bug:
# 0.0.14
with ThreadingQueue(num_of_threads, worker) as tq:
    ...
    await tq.put(data)
# From 0.0.15

# Sync
with ThreadingQueue(num_of_threads, worker) as tq:
    ...
    tq.put(data)

# Async
async with ThreadingQueue(num_of_threads, worker) as tq:
    ...
    await tq.put(data)
  • In both sync and async cases, you can provide a worker as an async function.
  • The async version is a little bit better in performance because it uses asyncio.sleep to wait when the queue is full compared to time.sleep in the sync version. In most cases, the difference in performance is not much.

Example

import json
import pymysql
import asyncio

from threadingq import ThreadingQueue

NUM_OF_THREADS = 40


def get_db_connection():
    return pymysql.connect(host='localhost',
                           user='root',
                           password='123456',
                           database='example',
                           cursorclass=pymysql.cursors.DictCursor)


# Build params for the worker, the params will be persistent with the thread
# This function is called when init a new thread or retry
def worker_params_builder():
    # Threads use db connection separately
    conn = get_db_connection()
    conn.autocommit(1)
    cursor = conn.cursor()
    return {"cursor": cursor, "connection": conn}


# To clear resources: close database connection, ...
# This function is called when the thread ends
def on_close_thread(cursor, connection):
    cursor.close()
    connection.close()


def worker(image_info, cursor, uid: int, **kwargs):
    # Update image info into database

    sql = "UPDATE images SET width = %s, height = %s, uid = %s WHERE id = %s"
    cursor.execute(sql, (image_info["width"], image_info["height"], uid, image_info["id"]))


def producer(source_file: str):
    with ThreadingQueue(
            NUM_OF_THREADS, worker,
            log_dir=f"logs/update-images",
            worker_params_builder=worker_params_builder,
            on_close_thread=on_close_thread,
            params={"uid": 123},
            retry_count=1
    ) as tq:
        with open(source_file, 'r') as f:
            for line in f:
                if not line:
                    continue
                data = json.loads(line)

                tq.put(data)


if __name__ == "__main__":
    producer("images.jsonl")

Development

Build project
  1. Update the version number in file src/threadingq/__version__.py
  2. Update the Change log
  3. Build and publish the changes
python3 -m build
python3 -m twine upload dist/*

Release Information

Add:

  • Support queue inside queue

Full changelog

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc