================
MapReduce Python
Experimental Pythonic MapReduce inspired by Spotify's luigi framework <http://www.github.com/Spotify/luigi>
_.
.. image:: https://travis-ci.org/geowurster/tinymr.svg?branch=master
:target: https://travis-ci.org/geowurster/tinymr?branch=master
.. image:: https://coveralls.io/repos/geowurster/tinymr/badge.svg?branch=master
:target: https://coveralls.io/r/geowurster/tinymr?branch=master
Canonical Word Count Example
Currently there are two MapReduce implementations, one that includes sorting and
one that does not. The example below would not benefit from sorting so we can
take advantage of the inherent optimization of not sorting. The API is the same
but tinymr.memory.MRSerial()
sorts after partitioning and again between the
reducer()
and final_reducer()
.
.. code-block:: python
import json
import re
import sys
from tinymr.memory import MRSerial
class WordCount(MRSerial):
def __init__(self):
self.pattern = re.compile('[\W_]+')
def mapper(self, item):
for word in item.split():
word = self.pattern.sub('', word)
if word:
yield word.lower(), 1
def reducer(self, key, values):
yield key, sum(values)
def final_reducer(self, pairs):
return {k: tuple(v)[0] for k, v in pairs}
wc = WordCount()
with open('LICENSE.txt') as f:
out = wc(f)
print(json.dumps(out, indent=4, sort_keys=True))
Truncated output:
.. code-block:: json
{
"a": 1,
"above": 2,
"advised": 1,
"all": 1,
"and": 8,
"andor": 1
}
Developing
.. code-block:: console
$ git clone https://github.com/geowurster/tinymr.git
$ cd tinymr
$ pip install -e .\[dev\]
$ py.test tests --cov tinymr --cov-report term-missing
License
See LICENSE.txt
Changelog
See CHANGES.md