🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Book a DemoInstallSign in
Socket

ttable

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ttable

Python toolkit for Boolean expressions

0.7.0
PyPI
Maintainers
1

Synopsis

tt (t\ ruth t\ able) is a library aiming to provide a toolkit for working with Boolean expressions and truth tables. Please see the project site_ for guides and documentation.

Installation

tt is tested on the latest three major versions of CPython. You can get the latest release from PyPI with::

pip install ttable

Features

Parse expressions::

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A impl not (B nand C)')
>>> b.tokens
['A', 'impl', 'not', '(', 'B', 'nand', 'C', ')']
>>> print(b.tree)
impl
`----A
`----not
     `----nand
          `----B
          `----C

Evaluate expressions::

>>> b = BooleanExpression('(A /\\ B) -> (C \\/ D)')
>>> b.evaluate(A=1, B=1, C=0, D=0)
False
>>> b.evaluate(A=1, B=1, C=1, D=0)
True

Interact with expression structure::

>>> b = BooleanExpression('(A and ~B and C) or (~C and D) or E')
>>> b.is_dnf
True
>>> for clause in b.iter_dnf_clauses():
...     print(clause)
...
A and ~B and C
~C and D
E

Apply expression transformations::

>>> from tt import to_primitives, to_cnf
>>> to_primitives('A xor B')
<BooleanExpression "(A and not B) or (not A and B)">
>>> to_cnf('(A nand B) impl (C or D)')
<BooleanExpression "(A or C or D) and (B or C or D)">

Or create your own::

>>> from tt import tt_compose, apply_de_morgans, coalesce_negations, twice
>>> b = BooleanExpression('not (not (A or B))')
>>> f = tt_compose(apply_de_morgans, twice)
>>> f(b)
<BooleanExpression "not not A or not not B">
>>> g = tt_compose(f, coalesce_negations)
>>> g(b)
<BooleanExpression "A or B">

Exhaust SAT solutions::

>>> b = BooleanExpression('~(A or B) xor C')
>>> for sat_solution in b.sat_all():
...     print(sat_solution)
...
A=0, B=0, C=0
A=1, B=0, C=1
A=0, B=1, C=1
A=1, B=1, C=1

Find just a few::

>>> with b.constrain(A=1):
...     for sat_solution in b.sat_all():
...         print(sat_solution)
...
A=1, B=0, C=1
A=1, B=1, C=1

Or just one::

>>> b.sat_one()
<BooleanValues [A=0, B=0, C=0]>

Build truth tables::

>>> from tt import TruthTable
>>> t = TruthTable('A iff B')
>>> print(t)
+---+---+---+
| A | B |   |
+---+---+---+
| 0 | 0 | 1 |
+---+---+---+
| 0 | 1 | 0 |
+---+---+---+
| 1 | 0 | 0 |
+---+---+---+
| 1 | 1 | 1 |
+---+---+---+

And much more_!

License

tt uses the MIT License_.

.. _MIT License: https://opensource.org/licenses/MIT .. _project site: https://tt.brianwel.ch .. _bool.tools: http://www.bool.tools .. _much more: https://tt.brianwel.ch/en/latest/user_guide.html

Keywords

boolean

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts