Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

turbopuffer

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

turbopuffer

Python Client for accessing the turbopuffer API

  • 0.1.22
  • PyPI
  • Socket score

Maintainers
1

turbopuffer Python Client CI Test

The official Python client for accessing the turbopuffer API.

Usage

  1. Install the turbopuffer package and set your API key.
$ pip install turbopuffer

Or if you're able to run C binaries for JSON encoding, use:

$ pip install turbopuffer[fast]
  1. Start using the API
import turbopuffer as tpuf
tpuf.api_key = 'your-token'  # Alternatively: export=TURBOPUFFER_API_KEY=your-token
# Choose the best region for your data https://turbopuffer.com/docs/regions
tpuf.api_base_url = "https://gcp-us-east4.turbopuffer.com"

# Open a namespace
ns = tpuf.Namespace('hello_world')

# Read namespace metadata
if ns.exists():
    print(f'Namespace {ns.name} exists with {ns.dimensions()} dimensions and approximately {ns.approx_count()} vectors.')

# Upsert your dataset
ns.upsert(
    ids=[1, 2],
    vectors=[[0.1, 0.2], [0.3, 0.4]],
    attributes={'name': ['foo', 'foos']},
    distance_metric='cosine_distance',
)

# Alternatively, upsert using a row iterator
ns.upsert(
    {
        'id': id,
        'vector': [id/10, id/10],
        'attributes': {'name': 'food', 'num': 8}
    } for id in range(3, 10),
    distance_metric='cosine_distance',
)

# Query your dataset
vectors = ns.query(
    vector=[0.15, 0.22],
    distance_metric='cosine_distance',
    top_k=10,
    filters=['And', [
        ['name', 'Glob', 'foo*'],
        ['name', 'NotEq', 'food'],
    ]],
    include_attributes=['name'],
    include_vectors=True
)
print(vectors)
# [
#   VectorRow(id=2, vector=[0.30000001192092896, 0.4000000059604645], attributes={'name': 'foos'}, dist=0.001016080379486084),
#   VectorRow(id=1, vector=[0.10000000149011612, 0.20000000298023224], attributes={'name': 'foo'}, dist=0.009067952632904053)
# ]

# List all namespaces
namespaces = tpuf.namespaces()
print('Total namespaces:', len(namespaces))
for namespace in namespaces:
    print('Namespace', namespace.name, 'contains approximately', namespace.approx_count(),
            'vectors with', namespace.dimensions(), 'dimensions.')

# Delete vectors using the separate delete method
ns.delete([1, 2])

Endpoint Documentation

For more details on request parameters and query options, check the docs at https://turbopuffer.com/docs

Development

  1. poetry run pytest
  2. Bump version in turbopuffer/version.py and pyproject.toml
  3. poetry build
  4. poetry publish

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc