🚀 Socket Launch Week 🚀 Day 4: Introducing Historical Analytics.Learn More
Socket
Sign inDemoInstall
Socket

turbopuffer

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

turbopuffer

Python Client for accessing the turbopuffer API

0.2.2
PyPI
Maintainers
1

turbopuffer Python Client CI Test

The official Python client for accessing the turbopuffer API.

Usage

  • Install the turbopuffer package and set your API key.
$ pip install turbopuffer

Or if you're able to run C binaries for JSON encoding, use:

$ pip install turbopuffer[fast]
  • Start using the API
import turbopuffer as tpuf
tpuf.api_key = 'your-token'  # Alternatively: export=TURBOPUFFER_API_KEY=your-token

# Choose the best region for your data: https://turbopuffer.com/docs/regions
# Setting base URL, option 1 (global):
# tpuf.api_base_url = "https://gcp-us-east4.turbopuffer.com"

# Open a namespace
# Setting base URL, option 2 (per namespace. If specified, this will override the global api_base_url):
ns = tpuf.Namespace('hello_world', base_url="https://gcp-us-east4.turbopuffer.com")

# Read namespace metadata
if ns.exists():
    print(f'Namespace {ns.name} exists with {ns.dimensions()} dimensions and approximately {ns.approx_count()} rows.')

# Upsert your dataset
ns.write(
    upsert_columns={
        "id": [1, 2],
        "vector": [[0.1, 0.1], [0.2, 0.2]],
        "name": ["one", "two"]
    },
    distance_metric='euclidean_squared',
)

# Alternatively, upsert with the row-based format
ns.write(
    upsert_rows=[
        {
            "id": id,
            "vector": [id/10, id/10],
            "name": "other"
        } for id in range(3, 10)
    ],
    distance_metric='euclidean_squared',
)

# Query your dataset
results = ns.query(
    vector=[0.18, 0.19],
    top_k=10,
    filters=['And', [
        ['name', 'Glob', '*o*'],
        ['name', 'NotEq', 'other'],
    ]],
    include_attributes=['name'],
    include_vectors=True
)
print(results)
# Output:
# [
#   VectorRow(id=2, vector=[0.2, 0.2], attributes={'name': 'two'}, dist=0.00049999997),
#   VectorRow(id=1, vector=[0.1, 0.1], attributes={'name': 'one'}, dist=0.0145)]
# ]

# List all namespaces
namespaces = tpuf.namespaces()
print('Total namespaces:', len(namespaces))
for namespace in namespaces:
    print('Namespace', namespace.name, 'contains approximately', namespace.approx_count(),
          'rows with', namespace.dimensions(), 'dimensions.')

# Delete rows
ns.write(deletes=[1, 2])

Endpoint Documentation

For more details on request parameters and query options, check the docs at https://turbopuffer.com/docs

Development

Run poetry install --with=test to set up the project and dependencies.

  • poetry run pytest
  • Bump version in turbopuffer/version.py and pyproject.toml
  • git tag vX.Y.Z && git push --tags
  • poetry build
  • poetry publish

Keywords

turbopuffer

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts