Security News
The Risks of Misguided Research in Supply Chain Security
Snyk's use of malicious npm packages for research raises ethical concerns, highlighting risks in public deployment, data exfiltration, and unauthorized testing.
Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types, PEP 484 Type Hints, and custom user-defined data-types.
Typical is fully compliant with the following Python Typing PEPs:
It provides a high-level Protocol API, Functional API, and Object API to suit most any occasion.
Installation is as simple as pip install -U typical
.
The latest documentation is hosted at python-typical.org.
Starting with version 2.0, All documentation is hand-crafted markdown & versioned documentation can be found at typical's Git Repo. (Versioned documentation is still in-the-works directly on our domain.)
The decorator that started it all:
typic.al(...)
import typic
@typic.al
def hard_math(a: int, b: int, *c: int) -> int:
return a + b + sum(c)
hard_math(1, "3")
#> 4
@typic.al(strict=True)
def strict_math(a: int, b: int, *c: int) -> int:
return a + b + sum(c)
strict_math(1, 2, 3, "4")
#> Traceback (most recent call last):
#> ...
#> typic.constraints.error.ConstraintValueError: Given value <'4'> fails constraints: (type=int, nullable=False, coerce=False)
Typical has both a high-level Object API and high-level Functional API. In general, any method registered to one API is also available to the other.
import dataclasses
from typing import Iterable
import typic
@typic.constrained(ge=1)
class ID(int):
...
@typic.constrained(max_length=280)
class Tweet(str):
...
@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
id: ID
tweets: Iterable[Tweet]
json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
protocol = typic.protocol(Tweeter)
t = protocol.transmute(json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])
print(protocol.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'
protocol.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#> ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)
import dataclasses
from typing import Iterable
import typic
@typic.constrained(ge=1)
class ID(int):
...
@typic.constrained(max_length=280)
class Tweet(str):
...
@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
id: ID
tweets: Iterable[Tweet]
json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
t = typic.transmute(Tweeter, json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])
print(typic.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'
typic.validate(Tweeter, {"id": 0, "tweets": []})
#> Traceback (most recent call last):
#> ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)
from typing import Iterable
import typic
@typic.constrained(ge=1)
class ID(int):
...
@typic.constrained(max_length=280)
class Tweet(str):
...
@typic.klass
class Tweeter:
id: ID
tweets: Iterable[Tweet]
json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
t = Tweeter.transmute(json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])
print(t.tojson())
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'
Tweeter.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#> ...
#> typic.constraints.error.ConstraintValueError: Given value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)
See our Releases.
FAQs
Typical: Python's Typing Toolkit.
We found that typical demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Snyk's use of malicious npm packages for research raises ethical concerns, highlighting risks in public deployment, data exfiltration, and unauthorized testing.
Research
Security News
Socket researchers found several malicious npm packages typosquatting Chalk and Chokidar, targeting Node.js developers with kill switches and data theft.
Security News
pnpm 10 blocks lifecycle scripts by default to improve security, addressing supply chain attack risks but sparking debate over compatibility and workflow changes.