Security News
The Risks of Misguided Research in Supply Chain Security
Snyk's use of malicious npm packages for research raises ethical concerns, highlighting risks in public deployment, data exfiltration, and unauthorized testing.
.. image:: https://travis-ci.org/podio/valideer.svg?branch=master :target: https://travis-ci.org/podio/valideer
.. image:: https://coveralls.io/repos/podio/valideer/badge.svg?branch=master :target: https://coveralls.io/r/podio/valideer?branch=master
.. image:: https://pypip.in/status/valideer/badge.svg :target: https://pypi.python.org/pypi/valideer/
.. image:: https://pypip.in/version/valideer/badge.svg :target: https://pypi.python.org/pypi/valideer/
.. image:: https://pypip.in/py_versions/valideer/badge.svg :target: https://pypi.python.org/pypi/valideer/
.. image:: https://pypip.in/license/valideer/badge.svg :target: https://pypi.python.org/pypi/valideer/
Lightweight data validation and adaptation library for Python.
At a Glance:
Podio API
_.To install run::
pip install valideer
Or for the latest version::
git clone git@github.com:podio/valideer.git
cd valideer
python setup.py install
You may run the unit tests with::
$ python setup.py test --quiet
running test
running egg_info
writing dependency_links to valideer.egg-info/dependency_links.txt
writing requirements to valideer.egg-info/requires.txt
writing valideer.egg-info/PKG-INFO
writing top-level names to valideer.egg-info/top_level.txt
reading manifest file 'valideer.egg-info/SOURCES.txt'
reading manifest template 'MANIFEST.in'
writing manifest file 'valideer.egg-info/SOURCES.txt'
running build_ext
...........................................................................................................................................................................
----------------------------------------------------------------------
Ran 171 tests in 0.106s
OK
We'll demonstrate valideer
using the following JSON schema example
_::
{
"name": "Product",
"properties": {
"id": {
"type": "number",
"description": "Product identifier",
"required": true
},
"name": {
"type": "string",
"description": "Name of the product",
"required": true
},
"price": {
"type": "number",
"minimum": 0,
"required": true
},
"tags": {
"type": "array",
"items": {
"type": "string"
}
},
"stock": {
"type": "object",
"properties": {
"warehouse": {
"type": "number"
},
"retail": {
"type": "number"
}
}
}
}
}
This can be specified by passing a similar but less verbose structure to the
valideer.parse
function::
>>> import valideer as V
>>> product_schema = {
>>> "+id": "number",
>>> "+name": "string",
>>> "+price": V.Range("number", min_value=0),
>>> "tags": ["string"],
>>> "stock": {
>>> "warehouse": "number",
>>> "retail": "number",
>>> }
>>> }
>>> validator = V.parse(product_schema)
parse
returns a Validator
instance, which can be then used to validate
or adapt values.
Validation ##########
To check if an input is valid call the is_valid
method::
>>> product1 = {
>>> "id": 1,
>>> "name": "Foo",
>>> "price": 123,
>>> "tags": ["Bar", "Eek"],
>>> "stock": {
>>> "warehouse": 300,
>>> "retail": 20
>>> }
>>> }
>>> validator.is_valid(product1)
True
>>> product2 = {
>>> "id": 1,
>>> "price": 123,
>>> }
>>> validator.is_valid(product2)
False
Another option is the validate
method. If the input is invalid, it raises
ValidationError
::
>>> validator.validate(product2)
ValidationError: Invalid value {'price': 123, 'id': 1} (dict): missing required properties: ['name']
For the common use case of validating inputs when entering a function, the
@accepts
decorator provides some nice syntax sugar (shamelessly stolen from
typecheck_)::
>>> from valideer import accepts
>>> @accepts(product=product_schema, quantity="integer")
>>> def get_total_price(product, quantity=1):
>>> return product["price"] * quantity
>>>
>>> get_total_price(product1, 2)
246
>>> get_total_price(product1, 0.5)
ValidationError: Invalid value 0.5 (float): must be integer (at quantity)
>>> get_total_price(product2)
ValidationError: Invalid value {'price': 123, 'id': 1} (dict): missing required properties: ['name'] (at product)
Adaptation ##########
Often input data have to be converted from their original form before they are
ready to use; for example a number that may arrive as integer or string and
needs to be adapted to a float. Since validation and adaptation usually happen
simultaneously, validate
returns the adapted version of the (valid) input
by default.
An existing class can be easily used as an adaptor by being wrapped in AdaptTo
::
>>> import valideer as V
>>> adapt_prices = V.parse({"prices": [V.AdaptTo(float)]}).validate
>>> adapt_prices({"prices": ["2", "3.1", 1]})
{'prices': [2.0, 3.1, 1.0]}
>>> adapt_prices({"prices": ["2", "3f"]})
ValidationError: Invalid value '3f' (str): invalid literal for float(): 3f (at prices[1])
>>> adapt_prices({"prices": ["2", 1, None]})
ValidationError: Invalid value None (NoneType): float() argument must be a string or a number (at prices[2])
Similar to @accepts
, the @adapts
decorator provides a convenient syntax
for adapting function inputs::
>>> from valideer import adapts
>>> @adapts(json={"prices": [AdaptTo(float)]})
>>> def get_sum_price(json):
>>> return sum(json["prices"])
>>> get_sum_price({"prices": ["2", "3.1", 1]})
6.1
>>> get_sum_price({"prices": ["2", "3f"]})
ValidationError: Invalid value '3f' (str): invalid literal for float(): 3f (at json['prices'][1])
>>> get_sum_price({"prices": ["2", 1, None]})
ValidationError: Invalid value None (NoneType): float() argument must be a string or a number (at json['prices'][2])
Required and optional object properties #######################################
By default object properties are considered optional unless they start with "+".
This default can be inverted by using the parsing
context manager with
required_properties=True
. In this case object properties are considered
required by default unless they start with "?". For example::
validator = V.parse({
"+name": "string",
"duration": {
"+hours": "integer",
"+minutes": "integer",
"seconds": "integer"
}
})
is equivalent to::
with V.parsing(required_properties=True):
validator = V.parse({
"name": "string",
"?duration": {
"hours": "integer",
"minutes": "integer",
"?seconds": "integer"
}
})
Ignoring optional object property errors ########################################
By default an invalid object property value raises ValidationError
,
regardless of whether it's required or optional. It is possible to ignore invalid
values for optional properties by using the parsing
context manager with
ignore_optional_property_errors=True
::
>>> schema = {
... "+name": "string",
... "price": "number",
... }
>>> data = {"name": "wine", "price": "12.50"}
>>> V.parse(schema).validate(data)
valideer.base.ValidationError: Invalid value '12.50' (str): must be number (at price)
>>> with V.parsing(ignore_optional_property_errors=True):
... print V.parse(schema).validate(data)
{'name': 'wine'}
Additional object properties ############################
Any properties that are not specified as either required or optional are allowed
by default. This default can be overriden by calling parsing
with
additional_properties=
False
to disallow all additional properties
Object.REMOVE
to remove all additional properties from the adapted value
any validator or parseable schema to validate all additional property values using this schema::
schema = { "name": "string", "duration": { "hours": "integer", "minutes": "integer", } } data = {"name": "lap", "duration": {"hours":3, "minutes":33, "seconds": 12}} V.parse(schema).validate(data) {'duration': {'hours': 3, 'minutes': 33, 'seconds': 12}, 'name': 'lap'} with V.parsing(additional_properties=False): ... V.parse(schema).validate(data) ValidationError: Invalid value {'hours': 3, 'seconds': 12, 'minutes': 33} (dict): additional properties: ['seconds'] (at duration) with V.parsing(additional_properties=V.Object.REMOVE): ... print V.parse(schema).validate(data) {'duration': {'hours': 3, 'minutes': 33}, 'name': 'lap'} with V.parsing(additional_properties="string"): ... V.parse(schema).validate(data) ValidationError: Invalid value 12 (int): must be string (at duration['seconds'])
Explicit Instantiation ######################
The usual way to create a validator is by passing an appropriate nested structure
to parse
, as outlined above. This enables concise schema definitions with
minimal boilerplate. In case this seems too cryptic or "unpythonic" for your
taste, a validator can be also created explicitly from regular Python classes::
>>> from valideer import Object, HomogeneousSequence, Number, String, Range
>>> validator = Object(
>>> required={
>>> "id": Number(),
>>> "name": String(),
>>> "price": Range(Number(), min_value=0),
>>> },
>>> optional={
>>> "tags": HomogeneousSequence(String()),
>>> "stock": Object(
>>> optional={
>>> "warehouse": Number(),
>>> "retail": Number(),
>>> }
>>> )
>>> }
>>> )
valideer
comes with several predefined validators, each implemented as a
Validator
subclass. As shown above, some validator classes also support a
shortcut form that can be used to specify implicitly a validator instance.
Basic
valideer.Boolean()
: Accepts bool
instances.
:Shortcut: "boolean"
valideer.Integer()
: Accepts integers (numbers.Integral
instances),
excluding bool
.
:Shortcut: "integer"
valideer.Number()
: Accepts numbers (numbers.Number
instances),
excluding bool
.
:Shortcut: "number"
valideer.Date()
: Accepts datetime.date
instances.
:Shortcut: "date"
valideer.Time()
: Accepts datetime.time
instances.
:Shortcut: "time"
valideer.Datetime()
: Accepts datetime.datetime
instances.
:Shortcut: "datetime"
valideer.String(min_length=None, max_length=None)
: Accepts strings
(basestring
instances).
:Shortcut: "string"
valideer.Pattern(regexp)
: Accepts strings that match the given regular
expression.
:Shortcut: Compiled regular expression
valideer.Condition(predicate, traps=Exception)
: Accepts values for which
predicate(value)
is true. Any raised exception that is instance of traps
is re-raised as a ValidationError
.
:Shortcut: Python function or method.
valideer.Type(accept_types=None, reject_types=None)
: Accepts instances of
the given accept_types
but excluding instances of reject_types
.
:Shortcut: Python type. For example int
is equivalent to valideer.Type(int)
.
valideer.Enum(values)
: Accepts a fixed set of values.
:Shortcut: N/A
Containers ##########
valideer.HomogeneousSequence(item_schema=None, min_length=None, max_length=None)
:
Accepts sequences (collections.Sequence
instances excluding strings) with
elements that are valid for item_schema
(if specified) and length between
min_length
and max_length
(if specified).
:Shortcut: [item_schema]
valideer.HeterogeneousSequence(*item_schemas)
: Accepts fixed length
sequences (collections.Sequence
instances excluding strings) where the
i
-th element is valid for the i
-th item_schema
.
:Shortcut: (item_schema, item_schema, ..., item_schema)
valideer.Mapping(key_schema=None, value_schema=None)
: Accepts mappings
(collections.Mapping
instances) with keys that are valid for key_schema
(if specified) and values that are valid for value_schema
(if specified).
:Shortcut: N/A
valideer.Object(optional={}, required={}, additional=True)
: Accepts JSON-like
objects (collections.Mapping
instances with string keys). Properties that
are specified as optional
or required
are validated against the respective
value schema. Any additional properties are either allowed (if additional
is True), disallowed (if additional
is False) or validated against the
additional
schema.
:Shortcut: {"property": value_schema, "property": value_schema, ...,
"property": value_schema}. Properties that start with '+'
are required, the rest are optional and additional properties are
allowed.
Adaptors ########
valideer.AdaptBy(adaptor, traps=Exception)
: Adapts a value by calling
adaptor(value)
. Any raised exception that is instance of traps
is
wrapped into a ValidationError
.
:Shortcut: N/A
valideer.AdaptTo(adaptor, traps=Exception, exact=False)
: Similar to
AdaptBy
but for types. Any value that is already instance of adaptor
is returned as is, otherwise it is adapted by calling adaptor(value)
. If
exact
is True
, instances of adaptor
subclasses are also adapted.
:Shortcut: N/A
Composite #########
valideer.Nullable(schema, default=None)
: Accepts values that are valid for
schema
or None
. default
is returned as the adapted value of None
.
default
can also be a zero-argument callable, in which case the adapted
value of None
is default()
.
:Shortcut: "?{validator_name}". For example "?integer"
accepts any integer
or None
value.
valideer.NonNullable(schema=None)
: Accepts values that are valid for
schema
(if specified) except for None
.
:Shortcut: "+{validator_name}"
valideer.Range(schema, min_value=None, max_value=None)
: Accepts values that
are valid for schema
and within the given [min_value, max_value]
range.
:Shortcut: N/A
valideer.AnyOf(*schemas)
: Accepts values that are valid for at least one
of the given schemas
.
:Shortcut: N/A
valideer.AllOf(*schemas)
: Accepts values that are valid for all the given
schemas
.
:Shortcut: N/A
valideer.ChainOf(*schemas)
: Passes values through a chain of validator and
adaptor schemas
.
:Shortcut: N/A
The set of predefined validators listed above can be easily extended with user
defined validators. All you need to do is extend Validator
(or a more
convenient subclass) and implement the validate
method. Here is an example
of a custom validator that could be used to enforce minimal password strength::
from valideer import String, ValidationError
class Password(String):
name = "password"
def __init__(self, min_length=6, min_lower=1, min_upper=1, min_digits=0):
super(Password, self).__init__(min_length=min_length)
self.min_lower = min_lower
self.min_upper = min_upper
self.min_digits = min_digits
def validate(self, value, adapt=True):
super(Password, self).validate(value)
if len(filter(str.islower, value)) < self.min_lower:
raise ValidationError("At least %d lowercase characters required" % self.min_lower)
if len(filter(str.isupper, value)) < self.min_upper:
raise ValidationError("At least %d uppercase characters required" % self.min_upper)
if len(filter(str.isdigit, value)) < self.min_digits:
raise ValidationError("At least %d digits required" % self.min_digits)
return value
A few notes:
The optional name
class attribute creates a shortcut for referring to a
default instance of the validator. In this example the string "password"
becomes an alias to a Password()
instance.
validate
takes an optional boolean adapt
parameter that defaults to
True
. If it is False
, the validator is allowed to skip adaptation and
perform validation only. This is basically an optimization hint that can be
useful if adaptation happens to be significantly more expensive than validation.
This isn't common though and so adapt
is usually ignored.
Shortcut Registration #####################
Setting a name
class attribute is the simplest way to create a validator
shortcut. A shortcut can also be created explicitly with the valideer.register
function::
>>> import valideer as V
>>> V.register("strong_password", Password(min_length=8, min_digits=1))
>>> is_fair_password = V.parse("password").is_valid
>>> is_strong_password = V.parse("strong_password").is_valid
>>> for pwd in "passwd", "Passwd", "PASSWd", "Pas5word":
>>> print (pwd, is_fair_password(pwd), is_strong_password(pwd))
('passwd', False, False)
('Passwd', True, False)
('PASSWd', True, False)
('Pas5word', True, True)
Finally it is possible to parse arbitrary Python objects as validator shortcuts.
For example let's define a Not
composite validator, a validator that accepts
a value if and only if it is rejected by another validator::
class Not(Validator):
def __init__(self, schema):
self._validator = Validator.parse(schema)
def validate(self, value, adapt=True):
if self._validator.is_valid(value):
raise ValidationError("Should not be a %s" % self._validator.__class__.__name__, value)
return value
If we'd like to parse '!foo'
strings as a shortcut for Not('foo')
, we
can do so with the valideer.register_factory
decorator::
>>> @V.register_factory
>>> def NotFactory(obj):
>>> if isinstance(obj, basestring) and obj.startswith("!"):
>>> return Not(obj[1:])
>>>
>>> validate = V.parse({"i": "integer", "s": "!number"}).validate
>>> validate({"i": 4, "s": ""})
{'i': 4, 's': ''}
>>> validate({"i": 4, "s": 1.2})
ValidationError: Invalid value 1.2 (float): Should not be a Number (at s)
.. _valideer: https://github.com/podio/valideer .. _JSON Schema: https://tools.ietf.org/html/draft-zyp-json-schema-03 .. _Podio API: https://developers.podio.com .. _nose: http://pypi.python.org/pypi/nose .. _coverage: http://pypi.python.org/pypi/coverage .. _JSON schema example: http://en.wikipedia.org/wiki/JSON#Schema .. _typecheck: http://pypi.python.org/pypi/typecheck
FAQs
Lightweight data validation and adaptation library for Python
We found that valideer demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Snyk's use of malicious npm packages for research raises ethical concerns, highlighting risks in public deployment, data exfiltration, and unauthorized testing.
Research
Security News
Socket researchers found several malicious npm packages typosquatting Chalk and Chokidar, targeting Node.js developers with kill switches and data theft.
Security News
pnpm 10 blocks lifecycle scripts by default to improve security, addressing supply chain attack risks but sparking debate over compatibility and workflow changes.