🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
DemoInstallSign in
Socket

vast-ai-api

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

vast-ai-api

A Vast.ai API helper

1.0.0
PyPI
Maintainers
1

A low-level API for Vast.ai

This project is not intended to replace the open-source vast.ai library but rather to complement it for those who want to have an easy-to-use API to build their own projects. The goal of this project is not to re-implement every functionality in the original library but to simplify it for future developers and end users.

It also integrates pandas dataframes for easier data manipulation.

Installation/Setup instructions

vast-ai-api is available on PyPi:

$ pip install vast-ai-api

or

$ poetry add vast-ai-api

Export your Vast-AI API key:

$ export VAST_AI_API_KEY=<YOUR_API_KEY_HERE>

After you reserve an instance, in order to change its state or interact with it in any way, you will need to setup an SSH key on Vast.ai. Then, add your private key to your ssh agent (see here).

Contributing

Currently, the API covers most of the functionality provided by the original Vast AI library, except for host actions (hosting machines, listing hosted machines, etc.). You can contribute by forking this repo, adding your changes and making a pull request.

Usage

Initializing the API Helper:

import pandas as pd
from vast_ai_api import VastAPIHelper

api = VastAPIHelper()

List all instances available to be rented

instances: pd.DataFrame = api.list_available_instances()

Pick an instance from the list and reserve it using its instance_id

instance: pd.Series = instances.iloc[50]
instance_id = instance["id"]
machine_id = instance["machine_id"]  # Needed after reserving
api.launch_instance(instance_id)

Instance is now launched and starting up with default parameters

launched_instances = api.list_current_instances()

Note that the instance_id that we got before reserving the instance changes after reservation. Instead, we have to use the machine_id to find the instance again and get its new id

newly_launched_instance = launched_instances[launched_instances["machine_id"] == machine_id]
new_instance_id = newly_launched_instance["id"]

Now we can perform actions on this launched instance:

api.stop_instance(new_instance_id)
api.start_instance(new_instance_id)
api.reboot_instance(new_instance_id)  # Equivalent to stopping and starting the instance

api.get_instance_logs(new_instance_id)

Connecting through SSH

Prerequisites: You must have initialized the instance as api.launch_instance(instance_id, use_jupyter_lab=False)

You can connect to the instance in 2 ways: with or without a proxy server (provided by Vast.ai). Using a proxy server is recommended as it allows you to stay anonymous when connecting to the gpu provider, but will slightly increase the latency to the machine.

ssh_client = api.connect_ssh(new_instance_id, use_vast_proxy=True)
stdin, stdout, stderr = ssh_client.exec_command("<your_command_here>")
print(stdout.readlines())

Alternatively, you can connect directly via the command line by reading the necessary host and port of the machine:

ssh_host = newly_launched_instance["ssh_host"]
ssh_port = newly_launched_instance["ssh_port"]

and then use ssh and replace ssh_host and ssh_port with the values above to connect your terminal to the instance:

$ ssh -p ${ssh_port} root@${ssh_host} -L 8080:localhost:8080

Transferring files via sftp

Prerequisites: You must have initialized the instance as api.launch_instance(instance_id, use_jupyter_lab=False)

"""
    src and dst format:
    
    localhost:22:<local_path> for the local machine
    <remote_host>:<remote_port>:<remote_path> for the remote machine

"""
api.copy("localhost:22:./polkadots.jpg", "ssh.vastai5.com:/home/workdir/polkadots.jpg", ssh_client)
api.copy("remote:/home/workdir/polkadots.jpg", "localhost:~/images/polka_dots.jpg", connect_ssh(new_instance_id))
api.copy("localhost:22:./polkadots.jpg", "ssh.vastai5.com:29347:/home/workdir/polkadots.jpg")

Alternatively, you can get your ssh_host and ssh_port as described above and use sftp locally:

sftp -P ${ssh_port} root@${ssh_host}

After connecting, you can interactively move files or do other commands:

put ./helloWorld.py ./helloWorld.py
get passwds passwds
chmod 775 ./script.sh
...

Deployment instructions

This repo is deployed to pypi using poetry. Simply run poetry build, then poetry publish

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts