You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

vbi-evaluate-blogs

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

vbi-evaluate-blogs

A short description of the package

0.1.20
pipPyPI
Maintainers
1

VBI Evaluate Blogs

vbi_evaluate_blogs is a Python package designed to evaluate Vietnamese crypto blog content quality. It uses Azure OpenAI to analyze text quality, image relevance, and fact accuracy with a focus on Web3/DeFi content.

Features

1. Text Content Evaluation (check_text_module.py)

  • Analyzes article structure and organization
  • Evaluates content quality and technical accuracy
  • Checks grammar and writing style for Vietnamese crypto content
  • Provides SEO optimization recommendations
  • Generates comprehensive quality reports

2. Image Analysis (check_image_module.py)

  • Analyzes image relevance and quality
  • Evaluates alt text and metadata
  • Checks image-text alignment
  • Provides visual accessibility recommendations
  • Supports common image formats (jpg, png, webp, etc.)

3. Fact Checking (check_fact_module.py)

  • Verifies claims using web search
  • Analyzes source credibility
  • Provides evidence-based verification
  • Uses SearxNG for research
  • Supports Vietnamese language validation

Installation

pip install vbi-evaluate-blogs
playwright install

Quick Start

  • Set up environment variables:
AZURE_OPENAI_API_KEY="your_api_key"
AZURE_OPENAI_ENDPOINT="your_endpoint"
SEARXNG_URL="your_searx_instance" # For fact checking
  • Basic usage:
from vbi_evaluate_blogs import check_text, check_image, check_fact
from langchain_openai import AzureChatOpenAI
from dotenv import load_dotenv
import os

load_dotenv()

# Initialize models
text_llm = AzureChatOpenAI(
    api_key=os.getenv("AZURE_OPENAI_API_KEY"),
    azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
    model="o3-mini",
    api_version="2024-12-01-preview"
)

image_llm = AzureChatOpenAI(
    api_key=os.getenv("AZURE_OPENAI_API_KEY"),
    azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
    model="gpt-4o-mini", # Vision model required
    api_version="2024-08-01-preview",
    temperature=0.7,
    max_tokens=16000
)

# Example content
content = """
# Sample Vietnamese Crypto Blog
Content with ![](image.jpg) and technical claims...
"""

# Get comprehensive analysis
text_report = check_text(text_llm, content)
image_report = check_image(text_llm, image_llm, content)
fact_report = check_fact(text_llm, content)

Module Details

Text Analysis Module

# Evaluate text content quality
result = check_text(text_llm, content)
print(result)
"""
Returns detailed report covering:
- Article structure analysis
- Content quality evaluation
- Grammar and style check
- SEO recommendations
"""

Image Analysis Module

# Analyze images in content
result = check_image(text_llm, image_llm, content)
print(result)
"""
Returns comprehensive report including:
- Image relevance scores
- Alt text evaluation
- Visual accessibility analysis
- Image-text alignment check
"""

Fact Checking Module

# Verify factual claims
result = check_fact(text_llm, content)
print(result)
"""
Returns fact check report with:
- Claim extraction
- Evidence analysis
- Source credibility
- Verification results
"""

Advanced Configuration

Custom Evaluation Criteria

You can customize the evaluation criteria by modifying the prompt templates in each module:

from vbi_evaluate_blogs.check_text_module import check_article_structure

# Custom structure analysis
result = check_article_structure(
    llm=text_llm,
    text=content,
    custom_criteria="Your custom evaluation criteria..."
)

Language Settings

The modules default to Vietnamese but support other languages:

from vbi_evaluate_blogs.check_image_module import ImageAnalyzer

analyzer = ImageAnalyzer(
    text_llm=text_llm,
    image_llm=image_llm,
    language="en"  # Change output language
)

Command Line Usage

Evaluate content directly from files:

# Full analysis 
python -m vbi_evaluate_blogs --file blog.md

# Specific checks
python -m vbi_evaluate_blogs --file blog.md --text --images
python -m vbi_evaluate_blogs --file blog.md --facts

License

MIT License. See LICENSE file for details.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts