
Security News
Another Round of TEA Protocol Spam Floods npm, But It’s Not a Worm
Recent coverage mislabels the latest TEA protocol spam as a worm. Here’s what’s actually happening.
vector-db-1807
Advanced tools
pip install vector_db_1807
or
uv add vector_db_1807
import os
import json
from langchain_community.document_loaders import PyPDFLoader
from langchain_ollama import OllamaEmbeddings, OllamaLLM
# import your local SDK client
from vector_db_1807 import VectorClient
# ---------------- CONFIG ----------------
API_URL = ""
API_KEY = ""
PDF_FILE = ""
TOP_K = 3
# ---------------- INIT ----------------
embedder = OllamaEmbeddings(model="llama3.2")
llm = OllamaLLM(model="llama3.2")
# Vector DB SDK client
client = VectorClient(
api_key=API_KEY,
base_url=API_URL,
)
# ---------------- LOAD PDF ----------------
loader = PyPDFLoader(PDF_FILE)
pages = loader.load()
full_text = "\n\n".join([p.page_content for p in pages])
print(f"[INFO] Loaded {len(pages)} pages from {PDF_FILE}")
# ---------------- CREATE EMBEDDING ----------------
embedding = embedder.embed_query(full_text)
metadata = {
"text": full_text,
"file_name": os.path.basename(PDF_FILE),
"source": "resume",
}
# ---------------- STEP 1: ADD VECTOR ----------------
print("\n[INFO] Uploading vector using VectorClient...")
add_resp = client.add_vector(
embedding=embedding,
metadata=metadata,
)
print("[INFO] Added successfully:\n", json.dumps(add_resp, indent=2))
document_id = add_resp["data"]["document_id"]
# ---------------- STEP 2: SEARCH ----------------
query = "What companies/organizations has he worked in so far?"
query_vector = embedder.embed_query(query)
print("\n[INFO] Searching via VectorClient...")
search_resp = client.search(
query_vector=query_vector,
document_id=document_id,
top_k=TOP_K
)
results = search_resp["data"]["results"]
print("[INFO] Search results:", json.dumps(results, indent=2))
if not results:
print("[WARN] No vector matches found.")
exit()
best = results[0]
context = best["metadata"]["text"]
print(f"[INFO] Using context from: {best['metadata']['file_name']}")
# ---------------- STEP 3: LLM ANSWER ----------------
prompt = f"""
Answer the question ONLY using the following context:
<context>
{context}
</context>
Question: {query}
Answer:
"""
answer = llm.invoke(prompt)
print("\n" + "="*60)
print("QUESTION:", query)
print("ANSWER:\n", answer)
print("="*60)
FAQs
Async + Sync Python SDK for the Vector Database API
We found that vector-db-1807 demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
Recent coverage mislabels the latest TEA protocol spam as a worm. Here’s what’s actually happening.

Security News
PyPI adds Trusted Publishing support for GitLab Self-Managed as adoption reaches 25% of uploads

Research
/Security News
A malicious Chrome extension posing as an Ethereum wallet steals seed phrases by encoding them into Sui transactions, enabling full wallet takeover.