Socket
Book a DemoInstallSign in
Socket

vector-db-1807

Package Overview
Dependencies
Maintainers
1
Versions
4
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

vector-db-1807

Async + Sync Python SDK for the Vector Database API

pipPyPI
Version
0.3.0
Maintainers
1

Code Example

pip install vector_db_1807

or

uv add vector_db_1807
import os
import json
from langchain_community.document_loaders import PyPDFLoader
from langchain_ollama import OllamaEmbeddings, OllamaLLM
# import your local SDK client
from vector_db_1807 import VectorClient

# ---------------- CONFIG ----------------
API_URL = ""
API_KEY = ""
PDF_FILE = ""
TOP_K = 3

# ---------------- INIT ----------------
embedder = OllamaEmbeddings(model="llama3.2")     
llm = OllamaLLM(model="llama3.2")

# Vector DB SDK client
client = VectorClient(
    api_key=API_KEY,
    base_url=API_URL,
)

# ---------------- LOAD PDF ----------------
loader = PyPDFLoader(PDF_FILE)
pages = loader.load()
full_text = "\n\n".join([p.page_content for p in pages])

print(f"[INFO] Loaded {len(pages)} pages from {PDF_FILE}")


# ---------------- CREATE EMBEDDING ----------------
embedding = embedder.embed_query(full_text)

metadata = {
    "text": full_text,
    "file_name": os.path.basename(PDF_FILE),
    "source": "resume",
}


# ---------------- STEP 1: ADD VECTOR ----------------
print("\n[INFO] Uploading vector using VectorClient...")

add_resp = client.add_vector(
    embedding=embedding,
    metadata=metadata,
)

print("[INFO] Added successfully:\n", json.dumps(add_resp, indent=2))

document_id = add_resp["data"]["document_id"]


# ---------------- STEP 2: SEARCH ----------------
query = "What companies/organizations has he worked in so far?"
query_vector = embedder.embed_query(query)

print("\n[INFO] Searching via VectorClient...")

search_resp = client.search(
    query_vector=query_vector,
    document_id=document_id,
    top_k=TOP_K
)

results = search_resp["data"]["results"]

print("[INFO] Search results:", json.dumps(results, indent=2))

if not results:
    print("[WARN] No vector matches found.")
    exit()

best = results[0]
context = best["metadata"]["text"]

print(f"[INFO] Using context from: {best['metadata']['file_name']}")


# ---------------- STEP 3: LLM ANSWER ----------------
prompt = f"""
Answer the question ONLY using the following context:

<context>
{context}
</context>

Question: {query}

Answer:
"""

answer = llm.invoke(prompt)

print("\n" + "="*60)
print("QUESTION:", query)
print("ANSWER:\n", answer)
print("="*60)

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts