
Security News
NVD Quietly Sweeps 100K+ CVEs Into a “Deferred” Black Hole
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
vectorbt allows you to easily backtest strategies with a couple of lines of Python code.
import vectorbt as vbt
price = vbt.YFData.download('BTC-USD').get('Close')
pf = vbt.Portfolio.from_holding(price, init_cash=100)
pf.total_profit()
8961.008555963961
fast_ma = vbt.MA.run(price, 10)
slow_ma = vbt.MA.run(price, 50)
entries = fast_ma.ma_crossed_above(slow_ma)
exits = fast_ma.ma_crossed_below(slow_ma)
pf = vbt.Portfolio.from_signals(price, entries, exits, init_cash=100)
pf.total_profit()
16423.251963801864
import numpy as np
symbols = ["BTC-USD", "ETH-USD"]
price = vbt.YFData.download(symbols, missing_index='drop').get('Close')
n = np.random.randint(10, 101, size=1000).tolist()
pf = vbt.Portfolio.from_random_signals(price, n=n, init_cash=100, seed=42)
mean_expectancy = pf.trades.expectancy().groupby(['randnx_n', 'symbol']).mean()
fig = mean_expectancy.unstack().vbt.scatterplot(xaxis_title='randnx_n', yaxis_title='mean_expectancy')
fig.show()
symbols = ["BTC-USD", "ETH-USD", "LTC-USD"]
price = vbt.YFData.download(symbols, missing_index='drop').get('Close')
windows = np.arange(2, 101)
fast_ma, slow_ma = vbt.MA.run_combs(price, window=windows, r=2, short_names=['fast', 'slow'])
entries = fast_ma.ma_crossed_above(slow_ma)
exits = fast_ma.ma_crossed_below(slow_ma)
pf_kwargs = dict(size=np.inf, fees=0.001, freq='1D')
pf = vbt.Portfolio.from_signals(price, entries, exits, **pf_kwargs)
fig = pf.total_return().vbt.heatmap(
x_level='fast_window', y_level='slow_window', slider_level='symbol', symmetric=True,
trace_kwargs=dict(colorbar=dict(title='Total return', tickformat='%')))
fig.show()
Digging into each strategy configuration is as simple as indexing with pandas:
pf[(10, 20, 'ETH-USD')].stats()
Start 2015-08-07 00:00:00+00:00
End 2021-08-01 00:00:00+00:00
Period 2183 days 00:00:00
Start Value 100.0
End Value 620402.791485
Total Return [%] 620302.791485
Benchmark Return [%] 92987.961948
Max Gross Exposure [%] 100.0
Total Fees Paid 10991.676981
Max Drawdown [%] 70.734951
Max Drawdown Duration 760 days 00:00:00
Total Trades 54
Total Closed Trades 53
Total Open Trades 1
Open Trade PnL 67287.940601
Win Rate [%] 52.830189
Best Trade [%] 1075.803607
Worst Trade [%] -29.593414
Avg Winning Trade [%] 95.695343
Avg Losing Trade [%] -11.890246
Avg Winning Trade Duration 35 days 23:08:34.285714286
Avg Losing Trade Duration 8 days 00:00:00
Profit Factor 2.651143
Expectancy 10434.24247
Sharpe Ratio 2.041211
Calmar Ratio 4.6747
Omega Ratio 1.547013
Sortino Ratio 3.519894
Name: (10, 20, ETH-USD), dtype: object
The same for plotting:
pf[(10, 20, 'ETH-USD')].plot().show()
It's not all about backtesting - vectorbt can be used to facilitate financial data analysis and visualization.
symbols = ["BTC-USD", "ETH-USD", "ADA-USD"]
price = vbt.YFData.download(symbols, period='6mo', missing_index='drop').get('Close')
bbands = vbt.BBANDS.run(price)
def plot(index, bbands):
bbands = bbands.loc[index]
fig = vbt.make_subplots(
rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.15,
subplot_titles=('%B', 'Bandwidth'))
fig.update_layout(template='vbt_dark', showlegend=False, width=750, height=400)
bbands.percent_b.vbt.ts_heatmap(
trace_kwargs=dict(zmin=0, zmid=0.5, zmax=1, colorscale='Spectral', colorbar=dict(
y=(fig.layout.yaxis.domain[0] + fig.layout.yaxis.domain[1]) / 2, len=0.5
)), add_trace_kwargs=dict(row=1, col=1), fig=fig)
bbands.bandwidth.vbt.ts_heatmap(
trace_kwargs=dict(colorbar=dict(
y=(fig.layout.yaxis2.domain[0] + fig.layout.yaxis2.domain[1]) / 2, len=0.5
)), add_trace_kwargs=dict(row=2, col=1), fig=fig)
return fig
vbt.save_animation('bbands.gif', bbands.wrapper.index, plot, bbands, delta=90, step=3, fps=3)
100%|██████████| 31/31 [00:21<00:00, 1.21it/s]
And this is just the tip of the iceberg of what's possible. Check out the website to learn more.
pip install -U vectorbt
To also install optional dependencies:
pip install -U "vectorbt[full]"
This work is fair-code distributed under Apache 2.0 with Commons Clause license. The source code is open and everyone (individuals and organizations) can use it for free. However, it is not allowed to sell products and services that are mostly just this software.
If you have any questions about this or want to apply for a license exception, please contact the author.
Installing optional dependencies may be subject to a more restrictive license.
This software is for educational purposes only. Do not risk money which you are afraid to lose. USE THE SOFTWARE AT YOUR OWN RISK. THE AUTHORS AND ALL AFFILIATES ASSUME NO RESPONSIBILITY FOR YOUR TRADING RESULTS.
FAQs
Python library for backtesting and analyzing trading strategies at scale
We found that vectorbt demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
Research
Security News
Lazarus-linked threat actors expand their npm malware campaign with new RAT loaders, hex obfuscation, and over 5,600 downloads across 11 packages.
Security News
Safari 18.4 adds support for Iterator Helpers and two other TC39 JavaScript features, bringing full cross-browser coverage to key parts of the ECMAScript spec.