
Product
Introducing the Alert Details Page: A Better Way to Explore Alerts
Socket's new Alert Details page is designed to surface more context, with a clearer layout, reachability dependency chains, and structured review.
voyageai
Advanced tools
Voyage AI provides cutting-edge embedding and rerankers.
Embedding models are neural net models (e.g., transformers) that convert unstructured and complex data, such as documents, images, audios, videos, or tabular data, into dense numerical vectors (i.e. embeddings) that capture their semantic meanings. These vectors serve as representations/indices for datapoints and are essential building blocks for semantic search and retrieval-augmented generation (RAG), which is the predominant approach for domain-specific or company-specific chatbots and other AI applications.
Rerankers are neural nets that output relevance scores between a query and multiple documents. It is common practice to use the relevance scores to rerank the documents initially retrieved with embedding-based methods (or with lexical search algorithms such as BM25 and TF-IDF). Selecting the highest-scored documents refines the retrieval results into a more relevant subset.
Voyage AI provides API endpoints for embedding and reranking models that take in your data (e.g., documents, queries, or query-document pairs) and return their embeddings or relevance scores. Embedding models and rerankers, as modular components, seamlessly integrate with other parts of a RAG stack, including vector stores and generative Large Language Models (LLMs).
Voyage AI’s embedding models and rerankers are state-of-the-art in retrieval accuracy. Please read our announcing blog post for details. Please also check out a high-level introduction of embedding models, semantic search, and RAG, and our step-by-step quickstart tutorial on implementing a minimalist RAG chatbot using Voyage model endpoints.
FAQs
Unknown package
We found that voyageai demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Product
Socket's new Alert Details page is designed to surface more context, with a clearer layout, reachability dependency chains, and structured review.

Product
Campaign-level threat intelligence in Socket now shows when active supply chain attacks affect your repositories and packages.

Research
Malicious PyPI package sympy-dev targets SymPy users, a Python symbolic math library with 85 million monthly downloads.