You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

wos-tabfile

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

wos-tabfile

Extract information from the exported Web of Science's tab delimited text file

0.0.1a1
pipPyPI
Maintainers
1

WoS Tab File

Extract information from the exported Web of Science's tab delimited text file

Installation

pip install wos-tabfile

Basic Usage

  • Retrieve publication year and numbers of citations in different indicators.
from wostabfile.core import WosTabFile
from collections import OrderedDict

# data source
root_path = "data/social network"
file_path = root_path + "/part1.txt"

# header fields in the text file
# Tag from: https://images.webofknowledge.com/images/help/WOS/hs_wos_fieldtags.html
wos_fields = ["PY", "NR", "TC", "U1", "U2"]
# load data by specific keys
wtf = WosTabFile(file_path=file_path)

table = wtf.generate_table(wos_fields)

print()
# group by year using count for numbers of publications per year
new_table=wtf.group_by(table,key_index=0,value_index=1,method="count")
new_table = OrderedDict(sorted(new_table.items()))

print("Year\tNumber of publication")
for year in new_table:
    print(f'{year}\t{new_table[year]}')

  • Retrieve keywords and its frequency from the bibliometric data
from wostabfile.core import WosTabFile
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize

root_path = "data/social network"
wos_fields = ["DE"]
wtf = WosTabFile(file_path=root_path)
dict_words={}

def singularize(text):
    wnl = WordNetLemmatizer()
    tokens = [token.lower() for token in word_tokenize(text)]
    lemmatized_words = [wnl.lemmatize(token) for token in tokens]
    return (' '.join(lemmatized_words)).strip()

def process_row(rows):
    global dict_words
    for ks in rows:
        wlist=ks[0]
        for w in wlist.split(";"):
            w=w.strip()
            if w=="":
                continue
            w=singularize(w)
            if w not in dict_words.keys():
                dict_words[w]=1
            else:
                dict_words[w]+=1

table = wtf.generate_table_by_folder(wos_fields,func=process_row)
dict_words =  dict(sorted(dict_words.items(),reverse=True, key=lambda item: item[1]))

print("Word\tTerm Count")
for k in list(dict_words.keys())[:20]:
    print(f'{k}\t{dict_words[k]}')
print()
print("Number of unique words: ",len(dict_words.keys()))

Sample bibliometric data in the above examples can be downloaded in this link.

License

The wos-tabfile project is provided by Donghua Chen.

Keywords

Web of Science

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts