
Security News
TypeScript is Porting Its Compiler to Go for 10x Faster Builds
TypeScript is porting its compiler to Go, delivering 10x faster builds, lower memory usage, and improved editor performance for a smoother developer experience.
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
Official PyTorch implementation of YOLOv10.
Comparisons with others in terms of latency-accuracy (left) and size-accuracy (right) trade-offs.
YOLOv10: Real-Time End-to-End Object Detection.
Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding
cv2
and cv3
operations in the v10Detect
are executed during inference.COCO
Model | Test Size | #Params | FLOPs | APval | Latency |
---|---|---|---|---|---|
YOLOv10-N | 640 | 2.3M | 6.7G | 38.5% | 1.84ms |
YOLOv10-S | 640 | 7.2M | 21.6G | 46.3% | 2.49ms |
YOLOv10-M | 640 | 15.4M | 59.1G | 51.1% | 4.74ms |
YOLOv10-B | 640 | 19.1M | 92.0G | 52.5% | 5.74ms |
YOLOv10-L | 640 | 24.4M | 120.3G | 53.2% | 7.28ms |
YOLOv10-X | 640 | 29.5M | 160.4G | 54.4% | 10.70ms |
conda
virtual environment is recommended.
conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .
python app.py
# Please visit http://127.0.0.1:7860
yolov10n
yolov10s
yolov10m
yolov10b
yolov10l
yolov10x
yolo val model=jameslahm/yolov10{n/s/m/b/l/x} data=coco.yaml batch=256
Or
from ultralytics import YOLOv10
model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')
model.val(data='coco.yaml', batch=256)
yolo detect train data=coco.yaml model=yolov10n/s/m/b/l/x.yaml epochs=500 batch=256 imgsz=640 device=0,1,2,3,4,5,6,7
Or
from ultralytics import YOLOv10
model = YOLOv10()
# If you want to finetune the model with pretrained weights, you could load the
# pretrained weights like below
# model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
# model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')
model.train(data='coco.yaml', epochs=500, batch=256, imgsz=640)
Optionally, you can push your fine-tuned model to the Hugging Face hub as a public or private model:
# let's say you have fine-tuned a model for crop detection
model.push_to_hub("<your-hf-username-or-organization/yolov10-finetuned-crop-detection")
# you can also pass `private=True` if you don't want everyone to see your model
model.push_to_hub("<your-hf-username-or-organization/yolov10-finetuned-crop-detection", private=True)
Note that a smaller confidence threshold can be set to detect smaller objects or objects in the distance. Please refer to here for details.
yolo predict model=jameslahm/yolov10{n/s/m/b/l/x}
Or
from ultralytics import YOLOv10
model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')
model.predict()
# End-to-End ONNX
yolo export model=jameslahm/yolov10{n/s/m/b/l/x} format=onnx opset=13 simplify
# Predict with ONNX
yolo predict model=yolov10n/s/m/b/l/x.onnx
# End-to-End TensorRT
yolo export model=jameslahm/yolov10{n/s/m/b/l/x} format=engine half=True simplify opset=13 workspace=16
# or
trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --fp16
# Predict with TensorRT
yolo predict model=yolov10n/s/m/b/l/x.engine
Or
from ultralytics import YOLOv10
model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')
model.export(...)
The code base is built with ultralytics and RT-DETR.
Thanks for the great implementations!
If our code or models help your work, please cite our paper:
@article{wang2024yolov10,
title={YOLOv10: Real-Time End-to-End Object Detection},
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
journal={arXiv preprint arXiv:2405.14458},
year={2024}
}
FAQs
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
We found that ymsyolo10 demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
TypeScript is porting its compiler to Go, delivering 10x faster builds, lower memory usage, and improved editor performance for a smoother developer experience.
Research
Security News
The Socket Research Team has discovered six new malicious npm packages linked to North Korea’s Lazarus Group, designed to steal credentials and deploy backdoors.
Security News
Socket CEO Feross Aboukhadijeh discusses the open web, open source security, and how Socket tackles software supply chain attacks on The Pair Program podcast.