The package seeks to allow Python code to be stored in the ZODB. The main
benefits are that this code can then be easily transferred to other servers
and be changed at run time.
Detailed Documentation
==================
Persistent Modules
Document Overview
This document seeks to capture technical information about persistent modules
to guide and document their design.
Goals
These goals largely come from Zope 3. It would be worth while considering
other applications.
-
Persistent modules are used to support management of software using the
ZODB.
-
Software can be updated using network clients, such as web browsers and
file-synchonozation tools.
-
Application-server clusters can be updated transactionally without requiring
server restarts.
-
Persistent modules leverage a familiar model, modules, for managing Python
software.
-
Persistent modules can be synchronized to a file-system using the Zope
file-system synchronization framework. Persistent modules are synchronized
for purposes including:
o Use of traditional tools such as editors and code-analysis tools
o Revision control
Ideally, the file-system representation would consist of a Python source
file.
Use cases
-
Create classes and functions that implement Zope 3 components.
o Utility, Adapter, View, and service classes and factories.
o Content components, which are typically persistent and/or
pickleable.
-
Define interfaces, including schema
-
Import classes, functions, and interfaces from other modules.
-
Import classes, functions, and interfaces from other persistent objects. For
example, an adapter registration object might have a direct reference to a
persistent-module-defined class.
-
Change module source
-
Synchronize modules with a file-system representation.
Edge cases
???
Fundamental dilema
Python modules were not designed to change at run time. The source of a
Python module normally doesn't change while a Python program is running.
There is a crude reload tool that allows modules to be manually reloaded to
handle source changes.
Python modules contain mutable state. A module has a dictionary that may be
mutated by application code. It may contain mutable data that is modified at
run time. This is typeically used to implement global registries.
When a module is reloaded, it is reexecuted with a dictionary that includes
the results of the previous execution.
Programs using the ZODB may be said to have logical lifetimes that exceed the
lifetimes of individual processes. In addition, the program might exist as
multiple individual processes with overlapping run-times.
The lifetime of a persistent program is long enough that it is likely that
module source code will change during the life time of the program.
Issues
Should the state of a module be represented soley by the module source?
Consider the possibilities:
A. Module state is represented soley by it's source.
-
This would be a departure from the behavior of standard Python modules.
Standard Python modules retain a module dictionary that is not overwritten
by reloads. Python modules may be mutated from outside and may contain
mutable data structures that are modified at run time.
OTOH, a regular module's state is not persistent or shared accross
processes.
For standard Python modules, one could view the module source as an
expression of the initial state of the module. (This isn't quite right
either, since some modules are written in such a way that they anticipate
module reloads.)
-
Deleting variables from a module's source that have been imported by other
modules or objects will cause the imported values to become disconnected
from the module's source. Even if the variables are added back later, the
previously-imported values will be disconnected.
It is tempting to introduce a data structure to record imports make from a
module. For example, suppose module M1 imports X from M2. It's tempting to
record that fact in M2, so that we disallow M2 to be removed or to be
changed in such a way that M2 no-longer defines X. Unfortunately, that
would introduce state that isn't captured by my M2's source.
-
Persistent modules could only be used for software. You wouldn't be able to
use them to store mutable data, such as registries or counters, that are
updated outside of the execution of the module source.
B. Module state isn't represented soley by it's source.
-
It would become possible to allow mutable data, such as registries in
persistent modules.
-
It could be very difficult to see what a module's state is. If a module
contained mutable data, you'd need some way to get to that data so you
could inspect and manipulate it.
-
When a module is synchronized to the file system, you'd need to syncronize
it's source and you'd also need to synchronize it's contents in some
way. Synchronization of the contents could be done using an XML pickle, but
management of the data using file-system-based tools would be cumbersome.
You'd end up with data duplicated between the two representations. It
would be cumbersome to manage the duplicated data in a consistent way.
C. Module state is represented soley by it's source, but allow additional meta
data.
This is the same as option A, except we support meta-data management. The
meta data could include dependency information. We'd keep track of external
usage (import) of module variables to influence whether deletion of the
module or defined variables is allowed, or whether to issue warnings when
variables are deleted.
Note that the management of the meta data need not be the responsibility of
the module. This could be done via some application-defined facility, in
which case, the module facility would need to provide an api for
implimenting hooks for managing this information.
Special cases
This section contains examples that may introduce challenges for persistent
modules or that might motivate or highlight issues described above,
-
Persistent classes
Persistent classes include data that are not represented by the class
sources. A class caches slot definitions inherited from base classes. This
is information that is only indirectly represented by it's source.
Similarly, a class manages a collection of it's subclasses. This allows a
class to invalidate cached slots in subclasses when a new slot definition is
assigned (via a setattr). The cached slots and collection of subclasses is
not part of a persistent class' state. It isn't saved in the database, but
is recomputed when the class is loaded into memory or when it's subclasses
are loaded into memory.
Consider two persistent modules, M1, which defines class C1, and M2, which
defines class C2. C2 subclasses C1. C1 defines a getitem slot, which
is inherited and cached by C2.
Suppose we have a process, P1, which has M1 and M2 in memory. C2 in P1 has
a (cached) getitem slot filled with the definition inherited from C1 in
P1. C1 in P1 has C2 in it's collection of subclasses. In P1, we modify M1,
by editing and recompiling its source. When we recompile M1's source, we'll
update the state of C1 by calling it's setstate method, passing the new
class dictionary. The setstate method will, in turn, use setattr to
assign the values from the new dictionary. If we set a slot attribute, the
setattribute method in C1 will notify each of it's subclasses that the
slot has changed. Now, suppose that we've added a len slot definition
when we modified the source. When we set the len attribute in C1, C2
will be notified that there is a new slot definition for len.
Suppose we have a process P2, which also has M1 and M2 loaded into memory.
As in P1, C2 in P2 caches the getitem slot and C1 in P2 has C2 in P2 in
it's collection of subclasses. Now, when M1 in P1 is modified and the
corresponding transaction is committed, an invalidation for M1 and all of
the persistent objects it defines, including C1, is sent to all other
processes. When P2 gets the invalidation for C1, it invalidates C1. It
happens that persistent classes are not allowed to be ghosts. When a
persistent class is invalidated, it immediately reloads it's state, rather
than converting itself into a ghost. When C2's state is reloaded in P2, we
assign it's attributes from the new class dictionary. When we assign slots,
we notify it's subclasses, including C2 in P2.
Suppose we have a process P3, that only has M1 in memory. In P3, M2 is not
in memory, nor are any of it's subobjects. In P3, C2 is not in the
collection of subclasses of C1, because C2 is not in memory and the
collection of subclasses is volatile data for C1. When we modify C1 in P1
and commit the transaction, the state of C1 in P3 will be updated, but the
state of C2 is not affected in P3, because it's not in memory.
Finally, consider a process, P4 that has M2, but not M1 in memory. M2 is
not a ghost, so C2 is in memory. Now, since C2 is in memory, C1 must be in
memory, even though M1 is not in memory, because C2 has a reference to C1.
Further, C1 cannot be a ghost, because persistent classes are not allowed to
be ghosts. When we commit the transation in P1 that updates M1, an
invalidation for C1 is sent to P4 and C1 is updated. When C1 is updated,
it's subclasses (in P4), including C2 are notified, so that their cached
slot definitions are updated.
When we modify M1, all copies in memory of C1 and C2 are updated properly,
even though the data they cache is not cached persistently. This works, and
only works, because persistent classes are never ghosts. If a class could
be a ghost, then invalidating it would have not effect and non-ghost
dependent classes would not be updated.
-
Persistent interfaces
Like classes, Zope interfaces cache certain information. An interface
maintains a set of all of the interfaces that it extends. In addition,
interfaces maintain a collection of all of their sub-interfaces. The
collection of subinterfaces is used to notify sub=interfaces when an
interface changes.
(Interfaces are a special case of a more general class of objects, called
"specifications", that include both interfaces and interface declareations.
Similar caching is performed for other specifications and related data
structures. To simplify the discussion, however, we'll limit ourselves to
interfaces.)
When designing persistent interfaces, we have alternative approaches to
consider:
A. We could take the same approach as that taken with persistent classes.
We would not save cached data persistently. We would compute it as
objects are moved into memory.
To take this approach, we'd need to also make persistent interfaces
non-ghostifiable. This is necessary to properly propigate object
changes.
One could argue that non-ghostifiability if classes is a necessary wart
forced on us by details of Python classes that are beyond our control,
and that we should avoid creating new kinds of objects that require
non-ghostifiability.
B. We could store the cached data persistently. For example, we could store
the set of extended interfaces and the set of subinterfaces in persistent
dictionaries.
A significant disadvantage of this approach is that persistent interfaces
would accumulate state is that not refelcted in their source code,
however, it's worth noting that, while the dependency and cache data
cannot be derived from a single module source, it can be derived from
the sources of all of the modules in the system. We can implement
persistent interface in such a way that execution of module code causes
all dependcies among module-defined interfaces to be recomputed
correctly.
(This is, to me, Jim, an interesting case: state that can be computed
during deserialization from other serialized state. This should not be
surprising, as we are essentially talking about cached data used for
optimization purposes.)
Proposals
-
A module's state must be reprersented, directly or indirectly, by it's
source. The state may also include information, such as caching data, that
is derivable from it's source-represented state.
It is unclear if or how we will enforce this. Perhaps it will be just a
guideline. The module-synchronization adapters used in Zope will only
synchronize the module source. If a module defines state that is not
represented by or derivable from it's source, then that data will be lost in
synchronization. Of course, applications that don't use the synchronization
framework would be unaffected by this limitation. Alternatively, one could
develop custom module-synchronization adapters that handled extra module
data, however, development of such adapters will be outside the scope of the
Zope project.
Notes
- When we invalidate a persistent class, we need to delete all of the
attributes defined by it's old dictionary that are not defined by the new
class dictionary.
=======
CHANGES
3.4.0 (2007-10-10)
- No changes since beta 2, but verified test success within the stable set.
3.4.0b2 (2007-10-10)
-
Adjust code to work with latest version of ZODB (3.8).
-
Converted module.txt
to REST from STX.
-
Improved package meta-data.
3.4.0b1 (2007-??-10)
- Initial release independent of the main Zope tree.