New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

sentimental

Package Overview
Dependencies
Maintainers
3
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

sentimental

1.5.0
Rubygems
Version published
Maintainers
3
Created
Source

sentimental

Simple sentiment analysis with Ruby

How it works

Sentences are tokenized and tokens are assigned a numerical score for their average sentiment. The total score is then used to determine the overall sentiment in relation to the threshold.

For example, the default threshold is 0.0. If a sentence has a score of 0, it is deemed "neutral". Higher than the thresold is "positive", lower is "negative".

If you set the threshold to a non-zero amount, e.g. 0.25:

  • Positive scores are > 0.25
  • Neutral scores are -0.25 - 0.25
  • Negative scores are < -0.25

Usage


# Create an instance for usage
analyzer = Sentimental.new

# Load the default sentiment dictionaries
analyzer.load_defaults

# And/or load your own dictionaries
analyzer.load_senti_file('path/to/your/file.txt')

# Set a global threshold
analyzer.threshold = 0.1

# Use your analyzer
analyzer.sentiment 'I love ruby'
#=> :positive

analyzer.sentiment 'I like ruby'
#=> :neutral

analyzer.sentiment 'I really like ruby'
#=> :positive

# You can make new analyzers with individual thresholds:
analyzer = Sentimental.new(threshold: 0.9)
analyzer.sentiment 'I love ruby'
#=> :positive

analyzer.sentiment 'I like ruby'
#=> :neutral

analyzer.sentiment 'I really like ruby'
#=> :neutral

# Get the numerical score of a string:
analyzer.score 'I love ruby'
#=> 0.925

Sentiment dictionaries

These are currently plain-text files containing whitespace-separated scores and tokens, e.g.:

1.0 Awesome
0.0 Meh
-1.0 Horrible

N-grams

You can parse n-grams of words by specifying their max size in the initializer:

  Sentimental.new(ngrams: 4)

The dictionary must have this format:

1.0 very happy
-2.0 no
0.0 meh

Installation

gem install sentimental

License

MIT License

Credits

Based largely on Christopher MacLellan's script: https://github.com/cmaclell/Basic-Tweet-Sentiment-Analyzer

Changes

  • 2013-10-13 Adding :-) to slang

FAQs

Package last updated on 04 May 2019

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts